This work presents a combined study of time-resolved fluorescence spectroscopy and all-atom molecular dynamics simulation to investigate periodic boundary conditions' and water models' influence on the orientation dynamics and translational and rotational diffusion of peptides in solution. We have characterized the effects of solvent box size and water model choice on the dynamics of two peptide systems, NATA and WK5. Computationally, translational, and rotational diffusion and internal fluctuations are investigated through all-atom molecular dynamics simulation with two water models and different box sizes. These results are compared with time-resolved fluorescence anisotropy decay (FAD) measurements. The associated time constant and orientation dynamics from FAD measurement along the L axis provided baseline data to validate molecular dynamics simulation. The modeling results show that diffusion rates vary roughly in inverse proportion to water model viscosity, as one would expect. Corrections for finite box size are significant for translational diffusion and insignificant for rotational diffusion. This study also finds that internal dynamics described by autocorrelation functions and kinetic network models are relatively insensitive to both box size and water model properties. Our observation suggests that different peptide properties respond differently to a change in simulation conditions.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2021.1947894DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
16
time-resolved fluorescence
12
dynamics simulation
12
rotational diffusion
12
box size
12
water model
12
dynamics
9
periodic boundary
8
all-atom molecular
8
orientation dynamics
8

Similar Publications

Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.

View Article and Find Full Text PDF

Nudiviruses (family ) are double-stranded DNA viruses that infect various insects and crustaceans. Among them, Heliothis zea nudivirus 1 (HzNV-1) represents the rare case of a lepidopteran nudivirus inducing a sexual pathology. Studies about molecular pathological dynamics of HzNV-1 or other nudiviruses are scarce.

View Article and Find Full Text PDF

Sequence-Dependent Slowdown of DNA Translocation Using Transmembrane RNA-DNA Interactions in MoS Nanopore.

J Phys Chem B

January 2025

Institute of Quantitative Biology, College of Life Sciences, and School of Physics, Zhejiang University, Hangzhou, Zhejiang 310058, China.

The emergence of nanopores in two-dimensional (2D) nanomaterials offers an attractive solid-state platform for high-throughput and low-cost DNA sequencing. However, several challenges remain to be addressed before their wide application, including the too-fast DNA translocation speed (compared to state-of-the-art single nucleoside detection techniques) and too large noise/signal ratios due to DNA fluctuations inside the nanopores. Here, we use molecular dynamics (MD) simulations to demonstrate the feasibility of utilizing RNA-DNA interactions in modulating DNA translocations in 2D MoS nanopores.

View Article and Find Full Text PDF

RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket.

View Article and Find Full Text PDF

Antibody-based pharmaceuticals are the leading biologic drug platform (> $75B/year). Despite a wealth of information collected on them, there is still a lack of knowledge on their inter-domain structural distributions, which impedes innovation and development. To address this measurement gap, we have developed a new methodology to derive biomolecular structure ensembles from distance distribution measurements via a library of tagged proteins bound to an unlabeled and otherwise unmodified target biologic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!