Bayesian identification of candidate transcription factors for the regulation of gene expression.

Am J Physiol Renal Physiol

Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.

Published: September 2021

Aquaporin-2 () gene transcription is strongly regulated by vasopressin in the renal collecting duct. However, the transcription factors (TFs) responsible for the regulation of expression of Aqp2 remain largely unknown. We used Bayes' theorem to integrate several -omics data sets to stratify the 1,344 TFs present in the mouse genome with regard to probabilities of regulating gene transcription. Also, we carried out new RNA sequencing experiments mapping the time course of vasopressin-induced changes in the transcriptome of mpkCCD cells to identify TFs that change in tandem with Aqp2. The analysis identified 17 of 1,344 TFs that are most likely to be involved in the regulation of gene transcription. These TFs included eight that have been proposed in prior studies to play a role in Aqp2 regulation, viz., Cebpb, Elf1, Elf3, Ets1, Jun, Junb, Nfkb1, and Sp1. The remaining nine represent new candidates for future studies (Atf1, Irf3, Klf5, Klf6, Mef2d, Nfyb, Nr2f6, Stat3, and Nr4a1). Conspicuously absent is CREB (Creb1), which has been widely proposed to mediate vasopressin-induced regulation of gene transcription (Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. 82: 205-244, 2002; Kortenoeven ML, Fenton RA. 1840: 1533-1549, 2014; Bockenhauer D, Bichet DG. 11: 576-588, 2015; Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE. 10: 135-146, 2015). Instead, another CREB-like TF, Atf1, ranked fourth among all TFs. RNA sequencing time-course experiments showed a rapid increase in mRNA, within 3 h of vasopressin exposure. This response was matched by an equally rapid increase in the abundance of the mRNA coding for Cebpb, which we have shown by chromatin immunoprecipitation-sequencing studies to bind downstream from the gene. The identified TFs provide a roadmap for future studies to understand regulation of gene expression. Abetted by the advent of systems biology-based ("-omics") techniques in the 21st century, there has been a massive expansion of published data relevant to virtually every physiological question. The authors have developed a large-scale data integration approach based on the application of Bayes'' theorem. In the current work, they integrated 12 different -omics data sets to identify the transcription factors most likely to mediate vasopressin-dependent regulation of transcription of the aquaporin-2 gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8530753PMC
http://dx.doi.org/10.1152/ajprenal.00204.2021DOI Listing

Publication Analysis

Top Keywords

regulation gene
16
gene transcription
16
transcription factors
12
transcription
8
gene
8
gene expression
8
aquaporin-2 gene
8
-omics data
8
data sets
8
1344 tfs
8

Similar Publications

Introduction: DU145 and LNCaP are classic prostate cancer cell lines. Characterizing their baseline transcriptomics profiles (without any intervention) can offer insights into baseline genetic features and oncogenic pathways that should be considered while interpreting findings after various experimental interventions such as exogenous gene transfection or drug treatment.

Methods: LNCaP and DU145 cell lines were cultured under normal conditions, followed by RNA extraction, cDNA conversion, library preparation, and RNA sequencing using the Illumina NovaSeq platform.

View Article and Find Full Text PDF

Promoter capture Hi-C identifies promoter-related loops and fountain structures in Arabidopsis.

Genome Biol

December 2024

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.

Background: Promoters serve as key elements in the regulation of gene transcription. In mammals, loop interactions between promoters and enhancers increase the complexity of the promoter-based regulatory networks. However, the identification of enhancer-promoter or promoter-related loops in Arabidopsis remains incomplete.

View Article and Find Full Text PDF

Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.

View Article and Find Full Text PDF

Reassessing the roles of oxidative DNA base lesion 8-oxoGua and repair enzyme OGG1 in tumorigenesis.

J Biomed Sci

January 2025

Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China.

ROS cause multiple forms of DNA damage, and among them, 8-oxoguanine (8-oxoGua), an oxidized product of guanine, is one of the most abundant. If left unrepaired, 8-oxoGua may pair with A instead of C, leading to a mutation of G: C to T: A during DNA replication. 8-Oxoguanine DNA glycosylase 1 (OGG1) is a tailored repair enzyme that recognizes 8-oxoGua in DNA duplex and initiates the base excision repair (BER) pathway to remove the lesion and ensure the fidelity of the genome.

View Article and Find Full Text PDF

Daidzein improves muscle atrophy caused by lovastatin by regulating the AMPK/FOXO3a axis.

Chin Med

December 2024

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.

Background: Lovastatin, the main lipid-lowering component in red yeast rice, is a golden anti-lipid drug, but its long-term application is continuously challenged by potential skeletal muscle atrophy. Daidzein, an isoflavone derived from soybeans and many Chinese medicines, shows therapeutic potential in treating muscle-related diseases and metabolic disorders. However, whether daidzein can improve lovastatin-induced muscle atrophy and the specific mechanism needs to further study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!