Deep learning methods for biomedical named entity recognition: a survey and qualitative comparison.

Brief Bioinform

College of Information Science and Engineering, Hunan University, 2 Lushan S Rd, Yuelu District, 410086, Changsha, China.

Published: November 2021

The biomedical literature is growing rapidly, and the extraction of meaningful information from the large amount of literature is increasingly important. Biomedical named entity (BioNE) identification is one of the critical and fundamental tasks in biomedical text mining. Accurate identification of entities in the literature facilitates the performance of other tasks. Given that an end-to-end neural network can automatically extract features, several deep learning-based methods have been proposed for BioNE recognition (BioNER), yielding state-of-the-art performance. In this review, we comprehensively summarize deep learning-based methods for BioNER and datasets used in training and testing. The deep learning methods are classified into four categories: single neural network-based, multitask learning-based, transfer learning-based and hybrid model-based methods. They can be applied to BioNER in multiple domains, and the results are determined by the dataset size and type. Lastly, we discuss the future development and opportunities of BioNER methods.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbab282DOI Listing

Publication Analysis

Top Keywords

deep learning
8
learning methods
8
biomedical named
8
named entity
8
deep learning-based
8
learning-based methods
8
methods
6
deep
4
biomedical
4
methods biomedical
4

Similar Publications

Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana.

View Article and Find Full Text PDF

Introduction: While the fact that visual stimuli synthesized by Artificial Neural Networks (ANN) may evoke emotional reactions is documented, the precise mechanisms that connect the strength and type of such reactions with the ways of how ANNs are used to synthesize visual stimuli are yet to be discovered. Understanding these mechanisms allows for designing methods that synthesize images attenuating or enhancing selected emotional states, which may provide unobtrusive and widely-applicable treatment of mental dysfunctions and disorders.

Methods: The Convolutional Neural Network (CNN), a type of ANN used in computer vision tasks which models the ways humans solve visual tasks, was applied to synthesize ("dream" or "hallucinate") images with no semantic content to maximize activations of neurons in precisely-selected layers in the CNN.

View Article and Find Full Text PDF

Decorrelative network architecture for robust electrocardiogram classification.

Patterns (N Y)

December 2024

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

To achieve adequate trust in patient-critical medical tasks, artificial intelligence must be able to recognize instances where they cannot operate confidently. Ensemble methods are deployed to estimate uncertainty, but models in an ensemble often share the same vulnerabilities to adversarial attacks. We propose an ensemble approach based on feature decorrelation and Fourier partitioning for teaching networks diverse features, reducing the chance of perturbation-based fooling.

View Article and Find Full Text PDF

Deep Learning for Discrimination of Early Spinal Tuberculosis from Acute Osteoporotic Vertebral Fracture on CT.

Infect Drug Resist

January 2025

Department of Orthopedics, First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.

Background: Early differentiation between spinal tuberculosis (STB) and acute osteoporotic vertebral compression fracture (OVCF) is crucial for determining the appropriate clinical management and treatment pathway, thereby significantly impacting patient outcomes.

Objective: To evaluate the efficacy of deep learning (DL) models using reconstructed sagittal CT images in the differentiation of early STB from acute OVCF, with the aim of enhancing diagnostic precision, reducing reliance on MRI and biopsies, and minimizing the risks of misdiagnosis.

Methods: Data were collected from 373 patients, with 302 patients recruited from a university-affiliated hospital serving as the training and internal validation sets, and an additional 71 patients from another university-affiliated hospital serving as the external validation set.

View Article and Find Full Text PDF

Adaptive Treatment of Metastatic Prostate Cancer Using Generative Artificial Intelligence.

Clin Med Insights Oncol

January 2025

Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON, Canada.

Despite the expanding therapeutic options available to cancer patients, therapeutic resistance, disease recurrence, and metastasis persist as hallmark challenges in the treatment of cancer. The rise to prominence of generative artificial intelligence (GenAI) in many realms of human activities is compelling the consideration of its capabilities as a potential lever to advance the development of effective cancer treatments. This article presents a hypothetical case study on the application of generative pre-trained transformers (GPTs) to the treatment of metastatic prostate cancer (mPC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!