Extensive application of metal powder, particularly in nanosize could potentially lead to catastrophic dust explosion, due to their pyrophoric behavior, ignition sensitivity, and explosivity. To assess the appropriate measures preventing accidental metal dust explosions, it is vital to understand the physicochemical properties of the metal dust and their kinetic mechanism. In this work, explosion severity of aluminum and silver powder, which can be encountered in a passivated emitter and rear contact (PERC) solar cell, was explored in a 0.0012 m cylindrical vessel, by varying the particle size and powder concentration. The and d/d values of metal powder were demonstrated to increase with decreasing particle size. Additionally, it was found that the explosion severity of silver powder was lower than that of aluminum powder due to the more apparent agglomeration effect of silver particles. The reduction on the specific surface area attributed to the particles' agglomeration affects the oxidation reaction of the metal powder, as illustrated in the thermogravimetric (TG) curves. A sluggish oxidation reaction was demonstrated in the TG curve of silver powder, which is contradicted with aluminum powder. From the X-ray photoelectron spectroscopy (XPS) analysis, it is inferred that silver powder exhibited two reactions in which the dominant reaction produced Ag and the other reaction formed AgO. Meanwhile, for aluminum powder, explosion products only comprise AlO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296001 | PMC |
http://dx.doi.org/10.1021/acsomega.1c00967 | DOI Listing |
Chem Biodivers
December 2024
Yogi Vemana University, Biotechnology and Bioinformatics, vemanapuram, 516005, Kadapa, INDIA.
Metal nanoparticles have attained much popularity due to their low toxicity, economic feasibility, and eco-friendly nature. The present study focuses on the synthesis of silver and zinc nanoparticles from Vitex altissima leaf extract, further characterized by UV/Vis spectral analysis, Powder-XRD, FE-SEM, FTIR, TEM, DLS, and Zeta potential. Synthesized silver and zinc nanoparticles were screened for anti-oxidant, anti-inflammatory, anti-bacterial, and anti-biofilm activities.
View Article and Find Full Text PDFJ Control Release
December 2024
Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
Oxycodone hydrochloride (HCl) extended release (ER) tablet is an abuse-deterrent formulation that uses a physical barrier to make it more difficult to crush tablets prior to abuse via various routes. A previously conducted in vivo pharmacokinetics (PK) study showed that particle size exhibited significant effects on PK. Here, a computational modeling study using a novel combined computational fluid dynamics and physiologically based PK model was applied to better understand the mechanisms that produce differences in PK according to particle size and formulation type for nasally insufflated oxycodone HCl immediate release (IR) and ER ts.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Grupo de Materiales Compuestos Termoplásticos (COMP), Instituto de ciencia y tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10890, 7600 Mar del Plata, Buenos Aires, Argentina.
Gelatin and chondroitin sulfate are natural polymers with significant potential in the biomedical field, particularly for wound healing applications. They can form hydrogels that absorb exudates and exhibit anti-inflammatory and antioxidant properties. Silver nanoparticles (AgNPs) can be used as antibacterial agents in wound management.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
Doping of carbon dots (CDs) with heteroatoms has garnered growing attention in recent years as a useful method of controlling their physicochemical properties. In this study, a new dual-mode sensor based on silver-doped CDs (AgCDs) derived from lignin was developed for fluorometric and spectrophotometric determination of valsartan (VAL). The analysis of AgCDs revealed a structure that closely resembled graphene oxide, with the successful doping of Ag.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Solid-State Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia.
This paper presents the results of a study on the characteristics of semiconductor sensors based on thin SnO films modified with antimony, dysprosium, and silver impurities and dispersed double Pt/Pd catalysts deposited on the surface to detect carbon monoxide (CO). An original technology was developed, and ceramic targets were made from powders of Sn-Sb-O, Sn-Sb-Dy-O, and Sn-Sb-Dy-Ag-O systems synthesized by the sol-gel method. Films of complex composition were obtained by RF magnetron sputtering of the corresponding targets, followed by technological annealing at various temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!