Alpha-synuclein (αSyn) is a highly expressed and conserved protein, typically found in the presynaptic terminals of neurons. The misfolding and aggregation of αSyn into amyloid fibrils is a pathogenic hallmark of several neurodegenerative diseases called synucleinopathies, such as Parkinson's disease. Since αSyn is an Intrinsically Disordered Protein, the characterization of its structure remains very challenging. Moreover, the mechanisms by which the structural conversion of monomeric αSyn into oligomers and finally into fibrils takes place is still far to be completely understood. Over the years, various studies have provided insights into the possible pathways that αSyn could follow to misfold and acquire oligomeric and fibrillar forms. In addition, it has been observed that αSyn structure can be influenced by different parameters, such as mutations in its sequence, the biological environment (e.g., lipids, endogenous small molecules and proteins), the interaction with exogenous compounds (e.g., drugs, diet components, heavy metals). Herein, we review the structural features of αSyn (wild-type and disease-mutated) that have been elucidated up to present by both experimental and computational techniques in different environmental and biological conditions. We believe that this gathering of current knowledge will further facilitate studies on αSyn, helping the planning of future experiments on the interactions of this protein with targeting molecules especially taking into consideration the environmental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292672 | PMC |
http://dx.doi.org/10.3389/fchem.2021.666585 | DOI Listing |
Eur Rev Med Pharmacol Sci
April 2017
Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
J Biomol Struct Dyn
December 2014
a Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Street, 03680 , Kyiv , Ukraine .
This study aims to cast light on the physico-chemical nature and energetic of the non-conventional CH···O/N H-bonds in the biologically important natural nucleobase pairs using a comprehensive quantum-chemical approach. As a whole, the 36 biologically important pairs, involving canonical and rare tautomers of nucleobases, were studied by means of all available up-to-date state-of-the-art quantum-chemical techniques along with quantum theory "Atoms in molecules" (QTAIM), Natural Bond Orbital (NBO) analysis, Grunenberg's compliance constants theory, geometrical and vibrational analyses to identify the CH···O/N interactions, reveal their physico-chemical nature and estimate their strengths as well as contribution to the overall base-pairs stability. It was shown that all the 38 CH···O/N contacts (25 CH···O and 13 CH···N H-bonds) completely satisfy all classical geometrical, electron-topological, in particular Bader's and "two-molecule" Koch and Popelier's, and vibrational criteria of H-bonding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!