Purpose: To develop and validate a clinical-radiomic nomogram for the preoperative prediction of the aldosterone-producing adenoma (APA) risk in patients with unilateral adrenal adenoma.
Patients And Methods: Ninety consecutive primary aldosteronism (PA) patients with unilateral adrenal adenoma who underwent adrenal venous sampling (AVS) were randomly separated into training (n = 62) and validation cohorts (n = 28) (7:3 ratio) by a computer algorithm. Data were collected from October 2017 to June 2020. The prediction model was developed in the training cohort. Radiomic features were extracted from unenhanced computed tomography (CT) images of unilateral adrenal adenoma. The least absolute shrinkage and selection operator (LASSO) regression model was used to reduce data dimensions, select features, and establish a radiomic signature. Multivariable logistic regression analysis was used for the predictive model development, the radiomic signature and clinical risk factors integration, and the model was displayed as a clinical-radiomic nomogram. The nomogram performance was evaluated by its calibration, discrimination, and clinical practicability. Internal validation was performed.
Results: Six potential predictors were selected from 358 texture features by using the LASSO regression model. These features were included in the Radscore. The predictors included in the individualized prediction nomogram were the Radscore, age, sex, serum potassium level, and aldosterone-to-renin ratio (ARR). The model showed good discrimination, with an area under the receiver operating characteristic curve (AUC) of 0.900 [95% confidence interval (CI), 0.807 to 0.993], and good calibration. The nomogram still showed good discrimination [AUC, 0.912 (95% CI, 0.761 to 1.000)] and good calibration in the validation cohort. Decision curve analysis presented that the nomogram was useful in clinical practice.
Conclusions: A clinical-radiomic nomogram was constructed by integrating a radiomic signature and clinical factors. The nomogram facilitated accurate prediction of the probability of APA in patients with unilateral adrenal nodules and could be helpful for clinical decision making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300014 | PMC |
http://dx.doi.org/10.3389/fonc.2021.634879 | DOI Listing |
J Neurosurg
January 2025
Departments of1Neurosurgery.
Objective: Craniopharyngiomas are rare, benign brain tumors that are primarily treated with surgery. Although the extended endoscopic endonasal approach (EEEA) has evolved as a more reliable surgical alternative and yields better visual outcomes than traditional craniotomy, postoperative visual deterioration remains one of the most common complications, and relevant risk factors are still poorly defined. Hence, identifying risk factors and developing a predictive model for postoperative visual deterioration is indeed necessary.
View Article and Find Full Text PDFSci Rep
January 2025
Department of MRI, Zhongshan City People's Hospital, No. 2, Sunwen East Road, Shiqi District, Zhongshan, 528403, Guangdong, China.
To investigate the potential of an MRI-based radiomic model in distinguishing malignant prostate cancer (PCa) nodules from benign prostatic hyperplasia (BPH)-, as well as determining the incremental value of radiomic features to clinical variables, such as prostate-specific antigen (PSA) level and Prostate Imaging Reporting and Data System (PI-RADS) score. A restrospective analysis was performed on a total of 251 patients (training cohort, n = 119; internal validation cohort, n = 52; and external validation cohort, n = 80) with prostatic nodules who underwent biparametric MRI at two hospitals between January 2018 and December 2020. A total of 1130 radiomic features were extracted from each MRI sequence, including shape-based features, gray-level histogram-based features, texture features, and wavelet features.
View Article and Find Full Text PDFCancer Imaging
November 2024
Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjianyuannanli No.17, Chaoyang District, Beijing, 100021, China.
Background: This study aims to construct predicting models using radiomic and clinical features in predicting first-line vascular endothelial growth factor receptor-tyrosine kinase inhibitor (VEGFR-TKI) early resistance in metastatic clear cell renal cell carcinoma (mccRCC) patients. We also aim to explore the correlation of predicting models with short and long-term survival of mccRCC patients.
Materials And Methods: In this retrospective study, 110 mccRCC patients from 2009 to 2019 were included and assigned into training and test sets.
Eur J Radiol
December 2024
Department of Radiology, Children's Hospital of Soochow University, Suzhou, China. Electronic address:
Biomed Eng Online
October 2024
The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!