Background: Inevitable resistance to chemotherapeutic drugs has become a major obstacle for the clinical treatment of multiple myeloma (MM). Circular RNAs (circRNAs) can regulate the chemoresistance in different tumors. Our study was to explore the regulation of circRNA arginine-glutamic acid dipeptide repeats (circRERE) in bortezomib (BTZ) resistance of MM.

Methods: CircRERE, microRNA-152-3p (miR-152-3p) and cluster of differentiation 47 (CD47) levels were assayed through the quantitative real-time polymerase chain reaction (qRT-PCR). Cell sensitivity to BTZ was analyzed using Cell Counting Kit-8 (CCK-8) assay. Cell proliferation and apoptosis were determined via colony formation assay and flow cytometry, respectively. The detection of all proteins was conducted by western blot. The target binding was analyzed via the dual-luciferase reporter assay and RIP assay.

Results: We found the upregulation of circRERE in BTZ-resistant MM samples and cells. BTZ resistance was inhibited after circRERE expression was downregulated in MM cells. CircRERE was identified to act as a miR-152-3p sponge. The effect of circRERE on the BTZ resistance was associated with the sponge function for miR-152-3p. CD47 was a target for miR-152-3p and circRERE could sponge miR-152-3p to generate the expression regulation of CD47. MiR-152-3p facilitated the susceptibility of MM cells to BTZ by targeting CD47.

Conclusion: These results suggested that circRERE could suppress the BTZ resistance in MM cells by mediating the miR-152-3p/CD47 axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283016PMC
http://dx.doi.org/10.1016/j.jbo.2021.100381DOI Listing

Publication Analysis

Top Keywords

btz resistance
16
circrere
9
multiple myeloma
8
regulation cd47
8
sponge mir-152-3p
8
cells btz
8
mir-152-3p
7
resistance
6
btz
6
circrere confers
4

Similar Publications

Safety, bactericidal activity, and pharmacokinetics of the antituberculosis drug candidate BTZ-043 in South Africa (PanACEA-BTZ-043-02): an open-label, dose-expansion, randomised, controlled, phase 1b/2a trial.

Lancet Microbe

December 2024

Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Germany; German Center for Infection Research, Munich Partner Site, Munich, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection, and Pandemic Research, Munich, Germany; Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. Electronic address:

Background: The broad use of bedaquiline and pretomanid as the mainstay of new regimens to combat tuberculosis is a risk due to increasing bedaquiline resistance. We aimed to assess the safety, bactericidal activity, and pharmacokinetics of BTZ-043, a first-in-class DprE1 inhibitor with strong bactericidal activity in murine models.

Methods: This open-label, dose-expansion, randomised, controlled, phase 1b/2a trial was conducted in two specialised tuberculosis sites in Cape Town, South Africa.

View Article and Find Full Text PDF

Boanmycin overcomes bortezomib resistance by inducing DNA damage and endoplasmic reticulum functional impairment in multiple myeloma.

Biol Direct

January 2025

Department of Hematology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.

Background: Multiple myeloma (MM) is a hematological malignancy characterized by uncontrolled proliferation of plasma cells and is currently incurable. Despite advancements in therapeutic strategies, resistance to proteasome inhibitors, particularly bortezomib (BTZ), poses a substantial challenge to disease management. This study aimed to explore the efficacy of boanmycin, a novel antitumor antibiotic, in overcoming resistance to BTZ in MM.

View Article and Find Full Text PDF

Chemoresistance is an important factor in multiple myeloma (MM) relapse and overall survival. However, the mechanism underlying resistance remains unclear. In this study, we identified adenine nucleotide translocase 3 (ANT3) as a novel biomarker and therapeutic target for MM progression and resistance to the proteasome inhibitor bortezomib (BTZ).

View Article and Find Full Text PDF

Background: Multiple Myeloma (MM) is the second most common hematological malignancy, characterized by the accumulation of monoclonal plasmocytes in the bone marrow. Despite advancements with proteasome inhibitors, immunomodulatory agents, and CD38-targeting antibodies, MM remains largely incurable due to resistant clones and frequent relapses. The success of the proteasome inhibitor bortezomib (BTZ) in MM treatment highlights the critical role of the ubiquitin-proteasome system (UPS) in this disease.

View Article and Find Full Text PDF

Background: Circular RNAs (circRNAs) act as vital players in multiple myeloma (MM). Herein, we focused on the function of hsa_circ_0003489 (circ_0003489) in MM development and bortezomib (BTZ) resistance.

Methods: Relative RNA levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!