Plant-plant interactions change through succession from facilitative to competitive. At early stages of succession, early-colonizing plants can increase the survival and reproductive output of other plants by ameliorating disturbance and stressful conditions. At later stages of succession, plant interactions are more competitive as plants put more energy toward growth and reproduction. In northern temperate rainforests, gap dynamics result in tree falls that facilitate tree regeneration (nurse logs) and bryophyte succession. How bryophyte-tree seedling interactions vary through log succession remains unclear. We examined the relationships of tree seedlings, bryophyte community composition, bryophyte depth, and percent canopy cover in 166 1.0 m plots on nurse logs and the forest floor in the Hoh rainforest in Washington, USA, to test the hypothesis that bryophyte-tree seedling interactions change from facilitative to competitive as the log decays. Tree seedling density was highest on young logs with early-colonizing bryophyte species (e.g., ) and lowest on decayed logs with , a long-lived moss that reaches depths >20 cm. As a result, bryophyte depth increased with nurse log decay and was negatively associated with tree seedling density. Tree seedling density was 4.6× higher on nurse logs than on the forest floor, which was likely due to competitive exclusion by forest floor plants, such as . Nurse logs had 17 species of bryophytes while the forest floor had six, indicating that nurse logs contribute to maintaining bryophyte diversity. Nurse logs enable both tree seedlings and smaller bryophyte species to avoid competition with forest floor plants, including the dominant bryophyte, . is likely a widespread driver of plant community structure given its dominance in northern temperate forests. Our findings indicate that plant-plant interactions shift with succession on nurse logs from facilitative to competitive and, thus, influence forest community structure and dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293789 | PMC |
http://dx.doi.org/10.1002/ece3.7786 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!