A growing body of literature links resources of hosts to their risk of infectious disease. Yet most hosts encounter multiple pathogens, and projections of disease risk based on resource availability could be fundamentally wrong if they do not account for interactions among pathogens within hosts. Here, we measured infection risk of grass hosts ( ) exposed to three naturally co-occurring viruses either singly or jointly (barley and cereal yellow dwarf viruses [B/CYDVs]: CYDV-RPV, BYDV-PAV, and BYDV-SGV) along experimental gradients of nitrogen and phosphorus supply. We asked whether disease risk (i.e., infection prevalence) differed in single versus co-inoculations, and whether these differences varied with rates and ratios of nitrogen and phosphorus supply. In single inoculations, the viruses did not respond strongly to nitrogen or phosphorus. However, in co-inoculations, we detected illustrative cases of 1) resource-dependent antagonism (lower prevalence of RPV with increasing N; possibly due to competition), 2) resource-dependent facilitation (higher prevalence of SGV with decreasing N:P; possibly due to immunosuppression), and 3) weak or no interactions within hosts (for PAV). Together, these within-host interactions created emergent patterns for co-inoculated hosts, with both infection prevalence and viral richness increasing with the combination of low nitrogen and high phosphorus supply. We demonstrate that knowledge of multiple pathogens is essential for predicting disease risk from host resources and that projections of risk that fail to acknowledge resource-dependent interactions within hosts could be qualitatively wrong. Expansions of theory from community ecology theory may help anticipate such relationships by linking host resources to diverse pathogen communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293790PMC
http://dx.doi.org/10.1002/ece3.7781DOI Listing

Publication Analysis

Top Keywords

host resources
12
disease risk
12
nitrogen phosphorus
12
phosphorus supply
12
infection risk
8
interactions pathogens
8
multiple pathogens
8
infection prevalence
8
interactions hosts
8
risk
7

Similar Publications

Deleted in malignant brain tumors 1 (DMBT1) gene relate to immune priming and phagocytosis modulation in the small abalone Haliotis diversicolor.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China. Electronic address:

The small abalone (Haliotis diversicolor) is an economic shellfish cultured in the south coast of China. In recent years, the frequent occurrence of the disease has led to significant mortality in abalone farms. Deleted in malignant brain tumors 1 (DMBT1), a member of the scavenger receptor cysteine-rich (SRCR) protein family, plays an important role in host defense.

View Article and Find Full Text PDF

Metabolites, Biotransformation, and Plant-Growth Dual Regulatory Activity from Uncovered by the Fermentation Interaction with a Host.

J Agric Food Chem

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.

One new azaphilone derivative () from in ordinary medium, one new phthalide derivative (), a microbial transformation product of ingredients by , a pair of new austdiol enantiomers (+)- and (-)-, one new epsilon-caprolactone derivative (), and one new ophiobolin-type sesterterpenoid () from the in host medium were reported. The structures were determined by spectroscopic analysis and single-crystal X-ray diffraction. Compounds - could completely inhibit the germination of rice seeds at 50 μg/mL, which is higher than that of the positive control.

View Article and Find Full Text PDF

Unveiling the role of microRNAs in nonhost resistance to Sclerotinia sclerotiorum: Rice-specific microRNAs attack the pathogen via cross-kingdom RNAi.

J Integr Plant Biol

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.

The development of rapeseed with high resistance against the pathogen Sclerotinia sclerotiorum is impeded by the lack of effective resistance resources within host species. Unraveling the molecular basis of nonhost resistance (NHR) holds substantial value for resistance improvement in crops. In the present study, small RNA sequencing and transcriptome sequencing were carried out between rice (a nonhost species of S.

View Article and Find Full Text PDF

Biofloc technology is an aquaculture production system that has gained popularity with tilapia production. Probiotics provide benefits for the host and/or aquatic environments by both regulating and modulating microbial communities and their metabolites. When a probiotic feed is combined with a biofloc system, the production amount may be improved through better fish growth, disease resistance, and/or improved water quality by reducing organic matter and stabilizing metrics such as pH and components of the nitrogen cycle.

View Article and Find Full Text PDF

Does a biological invasion modify host immune responses to parasite infection?

R Soc Open Sci

January 2025

Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

Biological invasions can disrupt the close and longstanding coevolved relationships between host and parasites. At the same time, the shifting selective forces acting on demography during invasion can result in rapid evolution of traits in both host and parasite. Hosts at the invasion front may reduce investment into costly immune defences and redistribute those resources to other fitness-enhancing traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!