Predator-inducible defenses constitute a widespread form of adaptive phenotypic plasticity, and such defenses have recently been suggested linked with the neuroendocrine system. The neuroendocrine system is a target of endocrine disruptors, such as psychoactive pharmaceuticals, which are common aquatic contaminants. We hypothesized that exposure to an antidepressant pollutant, fluoxetine, influences the physiological stress response in our model species, crucian carp, affecting its behavioral and morphological responses to predation threat. We examined short- and long-term effects of fluoxetine and predator exposure on behavior and morphology in crucian carp. Seventeen days of exposure to a high dose of fluoxetine (100 µg/L) resulted in a shyer phenotype, regardless of the presence/absence of a pike predator, but this effect disappeared after long-term exposure. Fluoxetine effects on morphological plasticity were context-dependent as a low dose (1 µg/L) only influenced crucian carp body shape in pike presence. A high dose of fluoxetine strongly influenced body shape regardless of predator treatment. Our results highlight that environmental pollution by pharmaceuticals could disrupt physiological regulation of ecologically important inducible defenses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293787 | PMC |
http://dx.doi.org/10.1002/ece3.7762 | DOI Listing |
Dis Aquat Organ
January 2025
National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306 Shanghai, PR China.
Cyvirus cyprinidallo 2 (CyHV-2) is the pathogen of herpesviral hematopoietic necrosis (HVHN) that mainly infects goldfish Carassius auratus and crucian carp C. carassius and is characterized by high infectivity and pathogenicity. The availability of rapid and convenient detection methods is essential for early detection of CyHV-2.
View Article and Find Full Text PDFFront Immunol
January 2025
Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.
Comp Biochem Physiol A Mol Integr Physiol
January 2025
Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
The prevalence of heatwave and hypoxia events and their devastating impacts on aquatic ecosystems and fishery resources reinforces the priority of research to address the resilience and adaption mechanisms to these two stressors in important fish species. However, our understanding of the development of cross-tolerance of these two stressors in fish still limited. Here, we investigated the impacts of prior heatwave exposure on hypoxia tolerance and the underlying mechanisms in silver carp (Hypophthalmichthys molitrix), a species of considerable ecological and commercial importance.
View Article and Find Full Text PDFOpen Vet J
November 2024
Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Open Vet J
November 2024
Department of Pathology and Poultry Disease, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!