A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficiency of biochar, nitrogen addition, and microbial agent amendments in remediation of soil properties and microbial community in Qilian Mountains mine soils. | LitMetric

Lacking systematic evaluations in soil quality and microbial community recovery after different amendments addition limits optimization of amendments combination in coal mine soils. We performed a short-term incubation experiment with a varying temperature over 12 weeks to assess the effects of three amendments (biochar: C; nitrogen fertilizer at three levels: N-N1~N3; microbial agent at two levels: M-M1~M2) based on C/N ratio (regulated by biochar and N level: 35:1, 25:1, 12.5:1) on mine soil properties and microbial community in the Qilian Mountains, China. Over the incubation period, soil pH and MBC/MBN were significantly lower than unamended treatment in N addition and C + M + N treatments, respectively. Soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon (MBC), and nitrogen (MBN) contents increased significantly in all amended treatments ( < .001). Higher AP, AK, MBC, MBN, and lower MBC/MBN were observed in N2-treated soil (corresponding to C/N ratio of 25:1). Meanwhile, N2-treated soil significantly increased species richness and diversity of soil bacterial community ( < .05). Principal coordinate analysis further showed that soil bacterial community compositions were significantly separated by N level. C-M-N treatments significantly increased the relative abundance (>1%) of the bacterial phyla Bacteroidetes and Firmicutes, and decreased the relative abundance of fungal phyla Chytridiomycota ( < .05). Redundancy analysis illustrated the importance of soil nutrients in explaining variability in bacterial community composition (74.73%) than fungal composition (35.0%). Our results indicated that N addition based on biochar and M can improve soil quality by neutralizing soil pH and increasing soil nutrient contents in short-term, and the appropriate C/N ratio (25:1) can better promote microbial mass, richness, and diversity of soil bacterial community. Our study provided a new insight for achieving restoration of damaged habitats by changing microbial structure, diversity, and mass by regulating C/N ratio of amendments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8293713PMC
http://dx.doi.org/10.1002/ece3.7715DOI Listing

Publication Analysis

Top Keywords

microbial community
12
biochar nitrogen
8
microbial agent
8
soil properties
8
properties microbial
8
community qilian
8
qilian mountains
8
mine soils
8
microbial
6
nitrogen
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!