Psoralen, one of the active ingredients in , has been previously reported to regulate the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). A previous study revealed that psoralen can regulate the expression levels of microRNA-488 and runt-related transcription factor 2 (Runx2) to promote the osteogenic differentiation of BMSCs. However, the underlying signalling pathway in this process remains to be fully elucidated. BMSCs have also been confirmed to play a key role in the occurrence and development of osteoporosis, and are expected to be potential seed cells in the treatment of osteoporosis. In order to explore the potential signalling pathways of psoralen acting on BMSCs, in the present study, human BMSCs (hBMSCs) were treated with different concentrations of psoralen (0.1, 1, 10 and 100 µmol/l) and the TGF-β receptor I (RI) inhibitor SB431542 (5 µmol/l) for 3, 7 or 14 days. Cell Counting Kit-8 and MTT assays were used to measure cell proliferation and cell viability of hBMSCs following psoralen administration. Alkaline phosphatase (ALP) activity and alizarin red S staining were used to assess the osteogenic differentiation ability of hBMSCs. Reverse transcription-quantitative PCR and western blotting were used to measure the expression of osteogenic differentiation-related genes [bone morphogenetic protein 4 (BMP4), osteopontin (OPN), Runx2 and Osterix] and proteins associated with the TGF-β/Smad3 pathway [TGF-β1, TGF-β RI, phosphorylated (p-)Smad and Smad3]. Psoralen was found to increase the proliferation and viability of hBMSCs. Although different concentrations of psoralen enhanced ALP activity and the calcified nodule content in hBMSCs, the enhancement effects were more potent at lower concentrations (0.1, 1 and 10 µmol/l). The expression of BMP4, OPN, Osterix, Runx2, TGF-β1, TGF-β RI and p-Smad3 was also promoted by psoralen at lower concentrations (0.1, 1 and 10 µmol/l). In addition, whilst SB431542 could inhibit calcium deposition and osteogenic differentiation-related gene expression in hBMSCs, psoralen effectively reversed the inhibitory effects of SB431542. In conclusion, psoralen accelerates the osteogenic differentiation of hBMSCs by activating the TGF-β/Smad3 pathway, which may be valuable for the future clinical treatment of osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281312PMC
http://dx.doi.org/10.3892/etm.2021.10372DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
20
tgf-β/smad3 pathway
12
psoralen
11
psoralen accelerates
8
accelerates osteogenic
8
bone marrow
8
marrow mesenchymal
8
mesenchymal stem
8
stem cells
8
activating tgf-β/smad3
8

Similar Publications

LIPUS promotes osteogenic differentiation of rat BMSCs and osseointegration of dental implants by regulating ITGA11 and focal adhesion pathway.

BMC Oral Health

January 2025

Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.

Background: Low-intensity pulsed ultrasound (LIPUS) has been used as an effective noninvasive method for treating fractures and osteoarthrosis, but the application in the field of oral implantation is in its infancy. This study aimed to clarify the effect and mechanism of LIPUS on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and implant osseointegration, and to provide an experimental basis for future clinical applications.

Methods: Dental implants were inserted into Wistar rat femurs, and LIPUS was performed for 4 weeks.

View Article and Find Full Text PDF

The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method.

View Article and Find Full Text PDF

Aims: Human periodontal ligament stem cells (hPDLSCs) exhibit an enormous potential to regenerate periodontal tissue. However, their translatability to the clinical setting is constrained by technical difficulties in standardizing culture conditions. The aim was to assess complex culture conditions using a proteomic-based protocol to standardize multi-layer hPDLSC cultivation methodology.

View Article and Find Full Text PDF

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!