Network Pharmacology-Based Mechanistic Investigation of Jinshui Huanxian Formula Acting on Idiopathic Pulmonary Fibrosis.

Evid Based Complement Alternat Med

Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.

Published: July 2021

Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease with high incidence, morbidity, and mortality rates. Jinshui Huanxian formula (JHF) is an empirical formula that targets the pathogenesis of lung-kidney qi deficiency and phlegm-blood stasis in pulmonary fibrosis (PF). The purpose of this study was to explore JHF's potential pharmacological mechanisms in IPF therapy using network intersection analysis. JHF's primary active components and corresponding target genes were predicted using various databases. Two sets of IPF disease genes were obtained from the DisGeNET and GEO databases and two sets of IPF drug targets were collected. The disease and drug target genes were analyzed. The JHF target genes that intersected with IPF's differentially expressed genes were identified to predict JHF's targets of action in IPF. The functions and pathways of predicted targets acting on IPF were analyzed using the DAVID and KEGG pathway databases. Finally, the resulting drug target mechanisms were validated in a rat model of PF. The initial analyses identified 494 active compounds and 1,304 corresponding targets for JHF. The intersection analysis revealed four common genes for the JHF targets, IPF disease, and anti-IPF drugs in the KEGG database. Furthermore, these genes were targeted by several JHF compounds. Seventy-two JHF targets were closely related to IPF, which suggests that they are therapeutically relevant. Target screening revealed that they regulate IPF through 18 pathways. The targets' molecular functions included regulation of oxidoreductase activity, kinase regulator activity, phosphotransferase activity, and transmembrane receptor protein kinase activity. In vivo experiments showed that JHF alleviated the degree of PF, including decreases in collagen deposition and epithelial-mesenchymal transition. This study systematically explored JHF's mechanisms to identify the specific target pathways involved in IPF. The generated pharmacological network, paired with in vivo validation, elucidates the potential roles and mechanisms of JHF in IPF therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279870PMC
http://dx.doi.org/10.1155/2021/8634705DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
12
target genes
12
ipf
11
jinshui huanxian
8
huanxian formula
8
idiopathic pulmonary
8
jhf
8
ipf therapy
8
intersection analysis
8
databases sets
8

Similar Publications

Background: Improved diagnostic testing (DT) of infections may optimize outcomes for solid organ transplant recipients (SOTR), but a comprehensive analysis is lacking.

Methods: We conducted a systematic literature review across multiple databases, including EMBASE and MEDLINE(R), of studies published between 1 January 2012-11 June 2022, to examine the evidence behind DT in SOTR. Eligibility criteria included the use of conventional diagnostic methods (culture, biomarkers, directed-polymerase chain reaction [PCR]) or advanced molecular diagnostics (broad-range PCR, metagenomics) to diagnose infections in hospitalized SOTR.

View Article and Find Full Text PDF

The left atrium (LA) is pivotal in cardiac hemodynamics, serving as a dynamic indicator of left ventricular (LV) compliance and diastolic function. The LA undergoes structural and functional adaptations in response to hemodynamic stress, infiltrative processes, myocardial injury, and arrhythmic triggers. Remodeling of the LA in response to these stressors directly impacts pulmonary circulation, eventually leading to pulmonary capillary involvement, pulmonary artery hypertension, and eventually right ventricular failure.

View Article and Find Full Text PDF

Context-specific eQTLs provide deeper insight into causal genes underlying shared genetic architecture of critically ill COVID-19 and idiopathic pulmonary fibrosis.

HGG Adv

January 2025

Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA. Electronic address:

Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis.

View Article and Find Full Text PDF

Airway basal stem cell therapy for lung diseases: an emerging regenerative medicine strategy.

Stem Cell Res Ther

January 2025

Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions.

View Article and Find Full Text PDF

Fibrosis in PCLS: comparing TGF-β and fibrotic cocktail.

Respir Res

January 2025

Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

Introduction: Fibrotic cocktail (FC) is a combination of pro-fibrotic and pro-inflammatory mediators that induces early fibrotic changes in organotypic lung models. We hypothesised that transforming growth factor beta 1 (TGF-β1) alone induces a pro-fibrotic effect similar to FC. Our aim was to compare the pro-fibrotic effects of TGF-β1 with FC in human precision-cut lung slices (PCLS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!