Green light, as part of the photosynthetically active radiation, has been proven to have high photosynthetic efficiency once absorbed by plant leaves and can regulate plant physiological activities. However, few studies have investigated the appropriate and efficient way of using the green light for plant production. Thus, the objective of this study was to investigate a moderate amount of green light, partially replacing red and blue light, for plant growth and development. In this experiment, four treatments were set up by adjusting the relative amount of green light as 0 (RB), 30 (G30), 60 (G60), and 90 (G90) μmol m s, respectively, with a total photosynthetic photon flux density of 200 μmol m s and a fixed red-to-blue ratio of 4:1. Lettuce ( cv. 'Tiberius') plant growth and morphology, stomatal characteristics, light absorptance and transmittance, photosynthetic characteristics, and nutritional quality were investigated. The results showed that: (1) shoot dry weight increased by 16.3 and 24.5% and leaf area increased by 11.9 and 16.2% under G30 and G60, respectively, compared with those under RB. Plant stem length increased linearly with increasing green-to-blue light ratio; (2) light transmittance of lettuce leaf under treatments employing green light was higher than that under RB, especially in the green region; (3) stomatal density increased, whereas stomatal aperture area decreased with the increase in the relative amount of green light; and (4) carbohydrate accumulation increased under G60 and G90. Soluble sugar contents under G60 and G90 increased by 39.4 and 19.4%, respectively. Nitrate contents under G30, G60, and G90 decreased by 26.2, 40.3, and 43.4%, respectively. The above results indicated that 15-30% green light replacing red and blue light effectively increased the yield and nutritional quality of lettuce plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294060PMC
http://dx.doi.org/10.3389/fpls.2021.627311DOI Listing

Publication Analysis

Top Keywords

green light
32
g60 g90
16
light
14
nutritional quality
12
amount green
12
g30 g60
12
green
9
quality lettuce
8
lettuce plants
8
light plant
8

Similar Publications

Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E.

View Article and Find Full Text PDF

Concurrent Pressure-Induced Superconductivity and Photoconductivity Transitions in PbSeTe.

Adv Mater

December 2024

Academy for Advanced Interdisciplinary Studies and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.

Concurrent superconductivity and negative photoconductivity (NPC) are rarely observed. Here, the discovery in PbSeTe of superconductivity and photoconductivity transitions between positive photoconductivity (PPC) and NPC during compression is reported to ≈40 GPa and subsequent decompression, which are also accompanied by reversible structure transitions (3D Fm m ⇌ 2D Pnma ⇌ 3D Pm m). Superconductivity with a maximum T of ≈6.

View Article and Find Full Text PDF

Light quality regulates growth and flavonoid content in a widespread forest understorey medicinal species Georgi.

Front Plant Sci

December 2024

CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.

Introduction: Introduction: Light is not only essential for plant photosynthesis and growth, but also acts as a signal to regulate its secondary metabolism. Despite the influence of light quality on the yield and flavonoid compounds in commercial crops is well-documented, its role in regulating wild understorey species, particularly medicine plants whose flavonoid biosynthesis driven by multiple spectral regions of canopy sunlight, is less understood.

Methods: To address it, we conducted a light-quality manipulation experiment on Georgi, a widespread understorey medicinal species, with light-emitting diodes (LED).

View Article and Find Full Text PDF

Background: The global prevalence of diabetes among adults over 18 years of age is expected to increase from 10.5% to 12.2% (between 2021 and 2045).

View Article and Find Full Text PDF

Bio-inspired modification of nanocellulose based on in-situ homogeneous radical coupling of coniferin.

Int J Biol Macromol

December 2024

Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.

A bioinspired method for surface modification of nanocellulose has been proposed, drawing inspiration from the lignification process in plant cell walls. Unlike traditional methods for synthesizing dehydrogenation polymers (DHPs) of lignin, this study innovatively prepared a water-soluble DHPs precursor, coniferin, which underwent homogeneous polymerization catalyzed by peroxidase to generate DHPs that adhered to the surface of nanocellulose. Modified nanocellulose was then filtered into membranes, and the presence of DHPs increased the water contact angle, achieving high hydrophobicity with little DHPs content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!