AI Article Synopsis

  • Allogeneic hematopoietic stem cell transplantation (allo-HSCT) can effectively treat blood cancers by leveraging the graft-versus-leukemia (GVL) effect, but may also lead to serious complications like graft-versus-host disease (GVHD) due to alloreactive T cells.
  • Significant advancements have been made in separating the beneficial GVL effects from harmful GVHD through targeted modulation of T cell immunity, influenced by various host factors and immune mediators like interferons (IFNs).
  • The review highlights recent research on how IFNs and epigenetic mechanisms regulate T cell responses in allo-HSCT and explores potential pharmacological methods to enhance these effects.

Article Abstract

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. This beneficial effect is derived mainly from graft-versus-leukemia (GVL) effects mediated by alloreactive T cells. However, these alloreactive T cells can also induce graft-versus-host disease (GVHD), a life-threatening complication after allo-HSCT. Significant progress has been made in the dissociation of GVL effects from GVHD by modulating alloreactive T cell immunity. However, many factors may influence alloreactive T cell responses in the host undergoing allo-HSCT, including the interaction of alloreactive T cells with both donor and recipient hematopoietic cells and host non-hematopoietic tissues, cytokines, chemokines and inflammatory mediators. Interferons (IFNs), including type I IFNs and IFN-γ, primarily produced by monocytes, dendritic cells and T cells, play essential roles in regulating alloreactive T cell differentiation and function. Many studies have shown pleiotropic effects of IFNs on allogeneic T cell responses during GVH reaction. Epigenetic mechanisms, such as DNA methylation and histone modifications, are important to regulate IFNs' production and function during GVHD. In this review, we discuss recent findings from preclinical models and clinical studies that characterize T cell responses regulated by IFNs and epigenetic mechanisms, and further discuss pharmacological approaches that modulate epigenetic effects in the setting of allo-HSCT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297501PMC
http://dx.doi.org/10.3389/fimmu.2021.717540DOI Listing

Publication Analysis

Top Keywords

alloreactive cells
12
alloreactive cell
12
cell responses
12
allogeneic cell
8
gvl effects
8
epigenetic mechanisms
8
cell
7
alloreactive
6
cells
6
effects
5

Similar Publications

Antibody-mediated rejection (AMR) remains a major complication after solid organ transplantation (SOT). Current treatment options are inefficient and result in drastic impairment of the general immunity. To selectively eliminate responsible alloreactive B cells characterized by anti-donor-HLA B cell receptors (BCRs), we generated T cells overcoming rejection by antibodies (CORA-Ts) engineered with a novel chimeric receptor comprising a truncated donor-HLA molecule as antigen recognition domain.

View Article and Find Full Text PDF

CD70-targeted iPSC-derived CAR-NK cells display potent function against tumors and alloreactive T cells.

Cell Rep Med

January 2025

Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China. Electronic address:

Clinical application of autologous chimeric antigen receptor (CAR)-T cells is complicated by limited targeting of cancer types, as well as the time-consuming and costly manufacturing process. We develop CD70-targeted, induced pluripotent stem cell-derived CAR-natural killer (NK) (70CAR-iNK) cells as an approach for universal immune cell therapy. Besides the CD70-targeted CAR molecule, 70CAR-iNK cells are modified with CD70 gene knockout, a high-affinity non-cleavable CD16 (hnCD16), and an interleukin (IL)-15 receptor α/IL-15 fusion protein (IL15RF).

View Article and Find Full Text PDF

Follicular lymphoma (FL) may undergo histological transformation (HT) into a more aggressive lymphoma. Although rituximab for B-cell non-Hodgkin lymphomas (B-NHL) has greatly improved the overall survival (OS) of patients with transformed FL (tFL), relapse after anthracycline-based chemoimmunotherapy has a poor prognosis. CD19-targeting chimeric antigen receptor-modified T-cell (CAR-T) therapy is a promising treatment for relapsed or refractory (r/r) large B-cell lymphoma (LBCL), including tFL.

View Article and Find Full Text PDF

Long-term allograft survival is limited by humoral-associated chronic allograft rejection, suggesting inadequate constraint of humoral alloimmunity by contemporary immunosuppression. Heterogeneity in alloreactive B cells and the incomplete definition of which B cells participate in chronic rejection in immunosuppressed transplant recipients limits our ability to develop effective therapies. Using a double-fluorochrome single-HLA tetramer approach combined with single-cell culture, we investigated the B-cell receptor (BCR) repertoire characteristics, avidity, and phenotype of donor HLA-DQ reactive B cells in a transplant recipient with end-stage donor specific antibody (DSA)-associated cardiac allograft vasculopathy while receiving maintenance immunosuppression (tacrolimus, mycophenolate mofetil, prednisone).

View Article and Find Full Text PDF

After skin allotransplantation, intercellular transfer of donor major histocompatibility complex molecules mediated primarily by extracellular vesicles (EVs) released by the allograft is known to contribute to semidirect and indirect activation of alloreactive T cells involved in graft rejection. At the same time, there is ample evidence showing that initiation of adaptive alloimmunity depends on early innate inflammation caused by tissue injury and subsequent activation of myeloid cells (macrophages and dendritic cells) recognizing danger-associated molecular patterns. Among these danger-associated molecular patterns, extracellular adenosine triphosphate plays a key role in innate inflammation by binding to P2X7 receptors (P2X7Rs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!