Quantitative MRI is an increasingly used method to monitor disease progression in muscular disorders due to its ability to measure changes in muscle fat content (reported as fat fraction) over a short period. Being able to objectively measure such changes is crucial for the development of new treatments in clinical trials. However, the analysis of the images involved continues to be a daunting task because of the time needed. Whether a more specific analysis selecting individual muscles or a global one analyzing the whole thigh or compartments could be a suitable alternative has only been marginally studied. In our study we compare three methods of analysis of 2-point-dixon images in a cohort of 34 patients with late onset Pompe disease followed over a period of one year. We measured fat fraction on MRIs obtained at baseline and at year 1, and we calculated the increment of fat fraction. We correlated the results obtained with the results of muscle function tests to investigate whether the three methods of analysis were equivalent or not. We observed significant differences between the three methods in the estimation of the fat fraction at both baseline and year 1, but no difference was found in the increment in fat fraction between baseline and year 1. When we correlated the fat fraction obtained with each method and the muscle function tests, we found a significant correlation with most tests in all three methods, although in most comparisons the highest correlation coefficient was found with the analysis of individual muscles. We conclude that the fastest strategy of analysis assessing compartments or the whole thigh could be reliable for certain cohorts of patients where the variable to study is the fat increment. In other sorts of studies, an individual muscle approach seems the most reliable technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298190PMC
http://dx.doi.org/10.3389/fneur.2021.675781DOI Listing

Publication Analysis

Top Keywords

fat fraction
24
three methods
16
baseline year
12
fat
9
muscle fat
8
pompe disease
8
measure changes
8
individual muscles
8
methods analysis
8
increment fat
8

Similar Publications

Background: Deep learning (DL)-based adipose tissue segmentation methods have shown great performance and efficacy for adipose tissue distribution analysis using magnetic resonance (MR) images, an important indicator of metabolic health and disease. The aim of this study was to evaluate the reproducibility of whole-body adipose tissue distribution analysis using proton density fat fraction (PDFF) images at different MR strengths.

Methods: A total of 24 volunteers were imaged using both 1.

View Article and Find Full Text PDF

Engineered nanomaterials (ENM) are capable of crossing the placental barrier and accumulating in fetal tissue. Specifically, the ENM nano-titanium dioxide (nano-TiO), has been shown to accumulate in placental and fetal tissue, resulting in decreased birthweight in pups. Additionally, nano-TiO is an established cardiac toxicant and regulator of glucose homeostasis, and exposure in utero may lead to serious maladaptive responses in cardiac development and overall metabolism.

View Article and Find Full Text PDF

Comparison of ultrasound to MR and histological methods for liver fat quantification.

Eur J Radiol

January 2025

MR-Unit, Dept. Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic.

Purpose: This prospective pilot study aims to evaluate the capabilities of novel quantitative ultrasound (QUS) methods based on attenuation (Att.PLUS) and sound speed (SSp.PLUS) for detecting liver fat.

View Article and Find Full Text PDF

Purpose: To develop a deep subspace learning network that can function across different pulse sequences.

Methods: A contrast-invariant component-by-component (CBC) network structure was developed and compared against previously reported spatiotemporal multicomponent (MC) structure for reconstructing MR Multitasking images. A total of 130, 167, and 16 subjects were imaged using T, T-T, and T-T- -fat fraction (FF) mapping sequences, respectively.

View Article and Find Full Text PDF

Objective: Childhood overweight and obesity has been a major global problem for a long time, with a steadily increasing prevalence of obesity and a growing number of cases of serious health complications associated with childhood obesity. The main objective of the study is to assess the prevalence of overweight and obesity in boys and girls before the COVID-19 pandemic in the Czech Republic.

Methods: Body height, weight, BMI, and body composition (fat free mass, skeletal muscle mass, body fat, visceral fat area) were assessed in a cohort of 4,475 subjects (2,180 boys and 2,295 girls) aged 6-15 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!