Microbial biofilms are difficult to control due to the limited accessibility that antimicrobial drugs and chemicals have to the entrapped inner cells. The extracellular matrix, binds water, contributes to altered cell physiology within biofilms and act as a barrier for most antiproliferative molecules. Thus, new strategies need to be developed to overcome biofilm vitality. In this review, based on 223 documents, the advantages, recommendations, and limitations of using bacteriophages as 'biofilm predators' are presented. The plausibility of using phages (bacteriophages and mycoviruses) to control biofilms grown in different environments is also discussed. The topics covered here include recent historical experiences in biofilm control/eradication using phages in medicine, dentistry, veterinary, and food industries, the pros and cons of their use, and the development of microbial resistance/immunity to such viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2021.1955866DOI Listing

Publication Analysis

Top Keywords

bacteriophages tools
4
tools biofilm
4
biofilm biocontrol
4
biocontrol fields
4
fields microbial
4
microbial biofilms
4
biofilms difficult
4
difficult control
4
control limited
4
limited accessibility
4

Similar Publications

The phyllosphere microbiome can positively or negatively impact plant health and growth, but we currently lack the tools to control microbiome composition. Contributing to a growing collection of bacteriophages (phages) targeting bacteria living in the wheat phyllosphere, we here isolate and sequence eight novel phages targeting common phyllosphere Erwinia and Pseudomonas strains, including two jumbo phages. We characterize genomic, phylogenetic, and morphological traits from these phages and argue for establishing four novel viral genera.

View Article and Find Full Text PDF

Phages, viruses of bacteria, play a pivotal role in Earth's biosphere and hold great promise as therapeutic and diagnostic tools in combating infectious diseases. Attachment of phages to bacterial cells is a crucial initial step of the interaction. The classic assay to quantify the dynamics of phage attachment involves coculturing and enumeration of bacteria and phages, which is laborious, lengthy, hence low-throughput, and only provides ensemble estimates of model-based adsorption rate constants.

View Article and Find Full Text PDF

Virus nanotechnology for intratumoural immunotherapy.

Nat Rev Bioeng

November 2024

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA.

Viruses can be designed to be tools and carrier vehicles for intratumoural immunotherapy. Their nanometre-scale size and shape allow for functionalization with or encapsulation of medical cargoes and tissue-specific ligands. Importantly, immunotherapies may particularly benefit from the inherent immunomodulatory properties of viruses.

View Article and Find Full Text PDF

The new age of the phage.

Essays Biochem

December 2024

Structural & Molecular Biology, Division of Biosciences, UCL, London, U.K.

The discovery of viruses that can devour bacteria, bacteriophages (phages), was in 1915. Phages are ubiquitous, outnumbering the organisms they devour, and genomically, morphologically, and ecologically diverse. They were critical in our development of molecular biology and biotechnology tools and have been used as therapeutics for over 100 years, primarily in Eastern Europe with thousands of patients from all over the world treated in Georgia.

View Article and Find Full Text PDF

Endolysins are bacteriophage-encoded peptidoglycan-degrading enzymes with potential applications for treating multidrug-resistant bacterial infections. While exogenously applied endolysins are active against Gram-positive bacteria in their native form, Gram-negative bacteria are protected from such activity of most native endolysins by an outer membrane. However, it was shown that recombinant endolysins can be designed to efficiently lyse Gram-negative bacteria from without as well.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!