In the present study, photodegradation of 4-chlorophenol (4-CP) using a step-scheme BiVO/WO heterostructure under visible LED light irradiation (Vis LED) from aqueous solutions was investigated. The photocatalyst was synthesized through the hydrothermal process and characterized physically and chemically via X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), and Brunnauer-Emmett-Teller (BET) techniques. The effects of the operational parameters i.e., solution pH, contact time, nanocomposite dosage, and initial 4-CP concentration were evaluated. Results indicated that BiVO/WO/Vis LED process has higher efficiency in 4-CP degradation than BiVO/Vis LED, WO/Vis LED, and BiVO/WO systems. At BiVO/WO concentration of 0.125 g/L, initial pH of 7, and initial 4-CP concentration of 25 mg/L, complete degradation of 4-CP (>97%) was achieved in reaction time of 60 min. The phenol, chlorobenzene, catechol, 4-chlorocatechol, 5-chloro-1,2,4-benzenetriol, hydroquinone, hydroxyhydroquinone, p-benzoquinone, o-benzoquinone, formic acid, acetic acid, and oxalic acid were identified as the major intermediates of 4-CP degradation. In optimal condition, 67.5% and 88.5% of TOC and COD removal rates were obtained in 120 min contact time, respectively. The degradation of 4-CP was pseudo-first-order kinetics. Through the use of tert-Butyl alcohol (TBA) and ethylenediamine tetraacetic acid (EDTA) as radical scavengers, hydroxyl radicals and holes were identified as the main active species in photocatalytic degradation. Also, a tentative pathway for 4-CP degradation using the Vis LED/BiVO/WO process was proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.113338 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!