Purpose: Plasticity in fatty acid metabolism is increasingly recognized as a major feature influencing cancer progression and efficacy of treatments. Estrogen receptor positive MCF7 human breast cancer cells have long been known to have no FADS2-mediated Δ6-desaturase activity. Our objective was to examine the effect of estrogen and the "antiestrogen" aromatase inhibitor letrozole, on Δ5- and Δ6-desaturase synthesized fatty acids in vitro.
Methods: Eicosa-11,14-dienoic acid (20:2n-6), a known substrate for both FADS1 and FADS2, was used as a sentinel of relative FADS2 and FADS1 activity. MCF7 cells and four additional estrogen responsive wild type cell lines (HepG2, SK-N-SH, Y79 and Caco2) were studied. FAME were quantified by GC-FID and structures identified by GCCACI-MS/MS.
Results: In all five cell lines, estrogen caused a dose dependent decrease in sciadonic acid (5,11,14-20:3, ScA) via apparent inhibition of FADS1 activity, and had no effect on FADS2 catalyzed synthesis of dihomo-gamma linolenic acid (8,11,14-20:3; DGLA). In MCF7 cells, letrozole caused a dose dependent increase in FADS2-catalyzed DGLA synthesis, which plateaued in SK-N-SH cells.
Conclusion: Letrozole restores Δ6-desaturase mediated synthesis of the anti-inflammatory PGE1-precursor DGLA in vitro and is the first endocrine-active agent to have opposing effects on FADS1 and FADS2 catalyzed activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plefa.2021.102312 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!