Standardization of immunopeptidomics experiments across laboratories is a pressing issue within the field, and currently a variety of different methods for sample preparation and data analysis tools are applied. Here, we compared different software packages to interrogate immunopeptidomics datasets and found that Peaks reproducibly reports substantially more peptide sequences (~30-70%) compared with Maxquant, Comet, and MS-GF+ at a global false discovery rate (FDR) of <1%. We noted that these differences are driven by search space and spectral ranking. Furthermore, we observed differences in the proportion of peptides binding the human leukocyte antigen (HLA) alleles present in the samples, indicating that sequence-related differences affected the performance of each tested engine. Utilizing data from single HLA allele expressing cell lines, we observed significant differences in amino acid frequency among the peptides reported, with a broadly higher representation of hydrophobic amino acids L, I, P, and V reported by Peaks. We validated these results using data generated with a synthetic library of 2000 HLA-associated peptides from four common HLA alleles with distinct anchor residues. Our investigation highlights that search engines create a bias in peptide sequence depth and peptide amino acid composition, and resulting data should be interpreted with caution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724928PMC
http://dx.doi.org/10.1016/j.mcpro.2021.100124DOI Listing

Publication Analysis

Top Keywords

choice search
4
search engine
4
engine sequencing
4
sequencing depth
4
depth hla
4
hla class
4
class allele-specific
4
allele-specific peptide
4
peptide repertoires
4
repertoires standardization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!