Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effect of powdered activated carbon (PAC) on chlorine oxidation is not well understood, therefore this study was designed to further investigate the chlorine oxidation mechanism with the presence of PAC. The oxidation processes of two model organic pollutants (bisphenol-A and methylene blue) with chlorine were compared in the absence and presence of PAC. The results showed a significant increase in reaction rates with the addition of PAC. Electron spin resonance indicated that the PAC catalyzed the oxidation of chlorine to generate more Cl and O. Additionally, the analysis of the surface characteristics of thermally modified PACs under N and their corresponding reaction rates revealed that there existed a significant correlation between the CO groups and the catalytic effect. PAC exhibited a much lower reaction rate under H modification, which indicated that the π electrons of the basal plane might be involved in the catalysis. Density functional theory calculations confirmed that the various oxygen groups on PAC reduced the activation barrier for HOCl dissociation, particularly the carboxyl group. This investigation provides a better understanding of the interactions between chlorine and activated carbon materials, which could be useful for selecting suitable water treatment agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.149020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!