The effectiveness of drinking water treatment is critical to achieve an optimal and safe drinking water. Disinfection is one of the most important steps to eliminate the health concern caused by the microbial population in this type of water. However, no study has evaluated the changes in its microbiome, specially the eukaryotic microbiome, and the fates of opportunistic pathogens generated by UV disinfection with medium-pressure mercury lamps in drinking water treatment plants (DWTPs). In this work, the eukaryotic community composition of a DWTP with UV disinfection was evaluated before and after a UV disinfection treatment by means of Illumina 18S rRNA amplicon-based sequencing. Among the physicochemical parameters analysed, flow and nitrate appeared to be related with the changes in the eukaryotic microbiome shape. Public health concern eukaryotic organisms such as Blastocystis, Entamoeba, Acanthamoeba, Hartmannella, Naegleria, Microsporidium or Caenorhabditis were identified. Additionally, the relation between the occurrence of some human bacterial pathogens and the presence of some eukaryotic organisms has been studied. The presence of some human bacterial pathogens such as Arcobacter, Mycobacterium, Pseudomonas and Parachlamydia were statistically correlated with the presence of some eukaryotic carriers showing the public health risk due to the bacterial pathogens they could shelter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.149070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!