Harmful bacterial flourish with the increase in environmental pollution and pose a great threat to human health. Thus, developing new and efficient antibacterial materials is imperative to reduce the pollution caused by traditional sterilization materials and improve sterilization efficiency. In this study, a new photocatalytic antibacterial material was developed to achieve an efficient antibacterial effect. TiCT@CuS composites were synthesized by simple hydrothermal method, by which copper sulfide (CuS) nanoparticles were anchored on the surface of TiCT to sharply improve the photocatalytic its antibacterial ability. TiCT@CuS exhibits excellent antibacterial activity against Escherichia coli and Staphylococcus aureus with bactericidal rates of 99.6% and 99.1%, respectively. Photoluminescence spectroscopy (PL), decay time PL, photocurrent test, electrochemical impedance spectroscopy and finite element method showed that the formation of TiCT@CuS heterojunction promoted the separation of electrons and holes, improved the electron transport efficiency, and elevated the generation of reactive oxygen species. Moreover, TiCT@CuS has a stronger photothermal effect and causes more heat release than CuS to improve antibacterial performance. The TiCT@CuS heterojunction has a broad application prospect in the disinfection and antibacterial fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.07.048DOI Listing

Publication Analysis

Top Keywords

copper sulfide
8
nanoparticles anchored
8
efficient antibacterial
8
photocatalytic antibacterial
8
tict@cus heterojunction
8
antibacterial
7
tict@cus
5
nir-triggered photocatalytic
4
photocatalytic photothermal
4
photothermal performance
4

Similar Publications

Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.

View Article and Find Full Text PDF

Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.

View Article and Find Full Text PDF

Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMALCu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMALCu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy.

View Article and Find Full Text PDF

A cytochrome repressed by a MarR family regulator confers resistance to metals, nitric oxide, sulfide, and cyanide in .

Appl Environ Microbiol

January 2025

Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.

Unlabelled: is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome that protects against multiple stresses.

View Article and Find Full Text PDF

Sulfur-containing gases produced during the utilization of petroleum fuels are the main cause of air pollution. To remove organic sulfur-containing compounds from simulated gasoline, magnetic hydrophobic Cu-containing SBA-15 mesoporous molecular sieves (PMS-Cu) were prepared by magnetization of the sample, loading and reduction of copper ion and hydrophobic treatment of the sample. The composition and structure of the synthesized composites were characterized by XRD, FTIR, SEM, TEM, and XPS, which proved the successful preparation of the adsorbent PMS-Cu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!