The inflammatory regulation of TRPA1 expression in human A549 lung epithelial cells.

Pulm Pharmacol Ther

The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland. Electronic address:

Published: October 2021

Transient receptor potential ankyrin-1 (TRPA1) is an ion channel mediating pain and cough signals in sensory neurons. We and others have shown that TRPA1 is also expressed in some non-neuronal cells and supports inflammatory responses. To address the pathogenesis and to uncover potential targets for pharmacotherapy in inflammatory lung diseases, we set out to study the expression of TRPA1 in human A549 lung epithelial cells under inflammatory conditions. TRPA1 expression was determined by RT-qPCR and Western blotting at a mRNA and protein level, respectively and its function was studied by Fluo 3-AM intracellular Ca measurement in A549 lung epithelial cells. TRPA1 promoter activity was assessed by reporter gene assay. TRPA1 expression was very low in A549 cells in the absence of inflammatory stimuli. Tumor necrosis factor-α (TNF-α) significantly increased TRPA1 expression and a synergy was found between TNF-α, interleukin-1β (IL-1β) and interferon-γ (IFN-γ). Reporter gene experiments indicate that the combination of TNF-α and IL-1β increases TRPA1 promoter activity while the effect of IFN-γ seems to be non-transcriptional. Interestingly, the glucocorticoid dexamethasone downregulated TRPA1 expression in A549 cells by reducing TRPA1 mRNA stability in a transcription-dependent manner. Furthermore, pharmacological blockade of TRPA1 reduced the production of the pro-inflammatory cytokine IL-8. In conclusion, TRPA1 was found to be expressed and functional in human A549 lung epithelial cells under inflammatory conditions. The anti-inflammatory steroid dexamethasone reduced TRPA1 expression through post-transcriptional mechanisms. The results reveal TRPA1 as a potential mediator and drug target in inflammatory lung conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pupt.2021.102059DOI Listing

Publication Analysis

Top Keywords

trpa1 expression
24
a549 lung
16
lung epithelial
16
epithelial cells
16
trpa1
15
human a549
12
trpa1 expressed
8
inflammatory lung
8
cells inflammatory
8
inflammatory conditions
8

Similar Publications

Background: While TRPA1 serves as a therapeutic target for nociceptive pain, its role in acute visceral pain induced by uterine cervical dilation (UCD) remains an enigma. This study aims to elucidate the upstream and downstream mechanisms of TRPA1 in the context of UCD-induced acute visceral pain.

Methods: The UCD rats were administered with SAH (inhibitor of the METTL3-METTL14 complex) via intrathecal tubing.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.

View Article and Find Full Text PDF

Genome-wide characterization of the TRP gene family and transcriptional expression profiles under different temperatures in gecko Hemiphyllodactylus yunnanensis.

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China. Electronic address:

Temperature is closely linked to the life history of organisms, and thus thermoception is an important sensory mechanism. Transient receptor potential (TRP) ion channels are the key mediators of thermal sensation. In this study, we analyzed the sequence characteristics of TRPs in gecko Hemiphyllodactylus yunnanensis and compared the phylogenetic relationships of TRP family members among different Squamata species.

View Article and Find Full Text PDF

Inflammation alters the expression and activity of the mechanosensitive ion channels in periodontal ligament cells.

Eur J Orthod

December 2024

Division of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.

Background: Periodontal ligament cells (PDLCs) possess mechanotransduction capability, vital in orthodontic tooth movement (OTM) and maintaining periodontal homeostasis. The study aims to elucidate the expression profiles of mechanosensitive ion channel (MIC) families in PDLCs and how the inflammatory mediator alters their expression and function, advancing the understanding of the biological process of OTM.

Methods And Methods: Human PDLCs were cultured and exposed to TNF-α.

View Article and Find Full Text PDF

The transient receptor potential ankyrin 1 (TRPA1) channels, characterized as nonselective cation channels with permeability to calcium ions (Ca), are part of the extensive family of transient receptor potential (TRP) channels. Research has demonstrated that TRPA1 channels function as sensors for oxidative stress in the renal tubules. Additionally, TRPA1 expression has increased in renal tissue following ischemia-reperfusion (IR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!