The role of lignin and lignin-based materials in sustainable construction - A comprehensive review.

Int J Biol Macromol

Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, PL-60965 Poznan, Poland. Electronic address:

Published: September 2021

The construction industry in the 21st century faces numerous global challenges associated with growing concerns for the environment. Therefore, this review focuses on the role of lignin and its derivatives in sustainable construction. Lignin's properties are defined in terms of their structure/property relationships and how structural differences arising from lignin extraction methods influence its application within the construction sector. Lignin and lignin composites allow the partial replacement of petroleum products, making the final materials and the entire construction sector more sustainable. The latest technological developments associated with cement composites, rigid polyurethane foams, paints and coatings, phenolic or epoxy resins, and bitumen replacements are discussed in terms of key engineering parameters. The application of life cycle assessment in construction, which is important from the point of view of estimating the environmental impact of various solutions and materials, is also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.07.125DOI Listing

Publication Analysis

Top Keywords

role lignin
8
sustainable construction
8
construction sector
8
construction
6
lignin lignin-based
4
lignin-based materials
4
materials sustainable
4
construction comprehensive
4
comprehensive review
4
review construction
4

Similar Publications

Lignin Metabolism Is Crucial in the Plant Responses to (Shen) in L.

Plants (Basel)

January 2025

Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

(Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of , significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to . This study aims to explore the responses of tea trees to different levels of infestation.

View Article and Find Full Text PDF

As a crucial post-translational modification (PTM), protein ubiquitination mediates the breakdown of particular proteins, which plays a pivotal role in a large number of biological processes including plant growth, development, and stress response. The ubiquitin-proteasome system (UPS) consists of ubiquitin (Ub), ubiquitinase, deubiquitinating enzyme (DUB), and 26S proteasome mediates more than 80% of protein degradation for protein turnover in plants. For the ubiquitinases, including ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3), the FBK (F-box Kelch repeat protein) is an essential component of multi-subunit E3 ligase SCF (Skp1-Cullin 1-F-box) involved in the specific recognition of target proteins in the UPS.

View Article and Find Full Text PDF

The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals.

Antioxidants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.

Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways.

View Article and Find Full Text PDF

Molybdenum Can Regulate the Expression of Molybdase Genes, Affect Molybdase Activity and Metabolites, and Promote the Cell Wall Bio-Synthesis of Tobacco Leaves.

Biology (Basel)

January 2025

National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.

Molybdenum (Mo) is widely used as a micronutrient fertilizer to improve plant growth and soil quality. However, the interactions between cell wall biosynthesis and molybdenum have not been explored sufficiently. This study thoroughly investigated the regulatory effects of different concentrations of Mo on tobacco cell wall biosynthesis from physiological and metabolomic aspects.

View Article and Find Full Text PDF

Laboratory evolution in enables rapid catabolism of a model lignin-derived aromatic dimer.

Appl Environ Microbiol

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!