Membrane proteins (MPs) encompass a large family of proteins with distinct cellular functions, and although representing over 50% of existing pharmaceutical drug targets, their structural and functional information is still very scarce. Over the last years, in silico analysis and algorithm development were essential to characterize MPs and overcome some limitations of experimental approaches. The optimization and improvement of these methods remain an ongoing process, with key advances in MPs' structure, folding, and interface prediction being continuously tackled. Herein, we discuss the latest trends in computational methods toward a deeper understanding of the atomistic and mechanistic details of MPs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1468-6_1DOI Listing

Publication Analysis

Top Keywords

membrane proteins
8
guardians cell
4
cell state-of-the-art
4
state-of-the-art membrane
4
proteins computational
4
computational point-of-view
4
point-of-view membrane
4
proteins mps
4
mps encompass
4
encompass large
4

Similar Publications

Methicillin-resistant (MRSA) causes osteomyelitis (OM), which seriously threatens public health due to its antimicrobial resistance. To increase the sensitivity of antibiotics and eradicate intracellular bacteria, a Zn and vancomycin (Van) codelivered nanotherapeutic (named Man-Zn/Van NPs) was fabricated and characterized via mannose (Man) modification. Man-Zn/Van NPs exhibit significant inhibitory activity against extra- and intracellular MRSA and obviously decrease the minimum inhibitory concentration of Van.

View Article and Find Full Text PDF

Despite advances in multimodal cancer therapy, such as combining radical surgery with high-intensity chemoradiotherapy, for SMARCB1/INI-1-deficient sinonasal carcinoma (SDSC), the prognosis of patients remains poor. Immunotherapy is gaining increasing popularity as a novel treatment strategy for patients with SMARCB1/INI-1-deficient tumors. Herein, we report on the management of three patients with SDSC who received PD-1/PD-L1 inhibitor therapy as a part of multimodal therapy based on surgery and chemoradiotherapy.

View Article and Find Full Text PDF

Single-Virus Microscopy of Biochemical Events in Viral Entry.

JACS Au

January 2025

Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, Virginia 22908, United States.

Cell entry by enveloped viruses involves a set of multistep, multivalent interactions between viral and host proteins as well as manipulation of nanoscale membrane mechanics by these interacting partners. A mechanistic understanding of these events has been challenging due to the complex nature of the interactions and the event-to-event heterogeneity involved. Single-virus microscopy has emerged as a powerful technique to probe viral binding and fusion kinetics.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is one of the most common life-quality reducing consequences of traumatic brain injury (TBI). However, to date there are no pharmacological approaches to predict or to prevent the development of PTE. The P2X7 receptor (P2X7R) is a cationic ATP-dependent membrane channel that is expressed throughout the brain.

View Article and Find Full Text PDF

The solute carrier (SLC) family of membrane proteins is a large class of transporters for many small molecules that are vital for cellular function. Several pathogenic mutations are reported in the glucose transporter subfamily SLC2, causing Glut1-deficiency syndrome (GLUT1DS1, GLUT1DS2), epilepsy (EIG2) and cryohydrocytosis with neurological defects (Dystonia-9). Understanding the link between these mutations and transporter dynamics is crucial to elucidate their role in the dysfunction of the underlying transport mechanism, which we investigate using molecular dynamics simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!