The Estudo de Descontinuação de Imatinibe após Pioglitazona (EDI-PIO) is a single-center, longitudinal, prospective, phase 2, non-randomized, open, clinical trial (NCT02852486, August 2, 2016 retrospectively registered) for the discontinuation of imatinib after concomitant use of pioglitazone, being the first of its kind in a Brazilian population with chronic myeloid leukemia. Due to remaining of leukemic quiescent cells that are not affected by tyrosine kinase inhibitors, it has been suggested the use of pioglitazone, a PPARγ agonist, together with imatinib as a strategy for the maintenance of deep molecular response. The clinical benefit to this association is still controversial, and the metabolic alteration along this process remains unclear. Therefore, we applied a metabolomic protocol using high-resolution mass spectrometry to profile plasmatic metabolic response of a prospective cohort of ten individuals under discontinuation of imatinib and pioglitazone protocol. By comparing patients under pioglitazone and imatinib treatment with imatinib monotherapy and discontinuation phase, we were able to annotate 41 and 36 metabolites, respectively. The metabolic alterations observed during imatinib-pioglitazone combined therapy are associated with an extensive lipid remodeling, with activation of β-oxidation pathway, in addition to the presence of markers that suggest mitochondrial dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12032-021-01551-5 | DOI Listing |
Cancers (Basel)
December 2024
Department of Hematology and Bone Marrow Transplant, National Center for Cancer Care and Research, Doha P.O. Box 3050, Qatar.
Background: Renal adverse drug reactions (ADRs) associated with tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML) are relatively rare, and there is currently no standardized protocol for their management. Therefore, this study aimed to summarize renal ADRs related to TKIs use in CML and propose an evidence-based approach to monitor and manage these ADRs.
Methods: A systematic literature review was performed to identify renal ADRs associated with TKIs in CML.
Z Gastroenterol
January 2025
Institut für Molekulare Immunologie, Technische Universität München, München, Germany.
Chronic liver disease (CLD) has massive systemic repercussions including major impacts on the body's immune system. Abnormalities in phenotype, function and numbers of various immune cell subsets have been established by a large number of clinical and pre-clinical studies. The loss of essential immune functions renders CLD-patients exceptionally susceptible to bacterial and viral infections and also impairs the efficacy of vaccination.
View Article and Find Full Text PDFNatural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of internal medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands.
Selected chronic myeloid leukemia (CML) patients may discontinue their tyrosine kinase inihibitor (TKI) in an attempt to achieve sustained treatment-free remission (TFR), which mitigates therapy-related side effects and limits treatment costs. TFR has been extensively studied following the discontinuation of adenosine triphosphate (ATP) - competitive TKI. However, there is minimal data concerning TFR after the discontinuation of the novel TKI asciminib.
View Article and Find Full Text PDFBlood
December 2024
UCLA Signaling Systems Laboratory, Los Angeles, California, United States.
Aging and chronic inflammation are associated with overabundant myeloid-primed multipotent progenitors (MPPs) amongst hematopoietic stem and progenitor cells (HSPCs). While HSC differentiation bias has been considered a primary cause of myeloid bias, whether it is sufficient has not been quantitatively evaluated. Here, we analyzed bone marrow data from the IκB- (Nfkbia+/-Nfkbib-/-Nfkbie-/-) mouse model of inflammation with elevated NFκB activity, which shows increased myeloid-biased MPPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!