A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In silico studies: Physicochemical properties, drug score, toxicity predictions and molecular docking of organosulphur compounds against Diabetes mellitus. | LitMetric

Diabetes mellitus (DM) is a significant common metabolic disorder seen all over the world. In 2020, according to the International Diabetes Federation (IDF), out of 463 million people who have diabetes all over the world, 77 million belong to India. As per the statistical prediction, the affected numbers are probably expected to rise to 642 million by 2040. The commercially available anti-diabetic drugs in the market include metformin, sulphonyl urea, meglitinides, miglitol, acarbose, biguanides, and thiazolidinediones cause side effects like hypoglycaemia, dizziness, liver cell injury, digestive discomfort, neurological defects, etc. Hence, bioactive organosulphur based functional ligands are chosen in this study to arrive at a newer drug for DM. In this work, in silico analysis of organosulphur molecular descriptors like physicochemical properties, solubility, drug score, and toxicity predictions are evaluated using OSIRIS and Toxtree freeware. The essential parameters for discovering drugs for biopharmaceutical formulations viz the solubility of drugs and toxicity have been calculated. The protein target Dipeptidyl peptidase DPP4 (PID: 2RIP) was docked against energy minimised sulphur compounds using Hex 6.3. The results indicate that the drug likeliness of the molecule 4, that is, N-[(3,3-dimethyl piperidin-2-yl) methyl]-4-ethyl sulphonyl aniline is active with decreasing binding energy score (-212.24 Kcal mol ) with no toxicity and also few sulphur compounds are active against diabetes compared to standard drug metformin (-158.33 Kcal mol ). The best drug-like ligand N-[(3,3-dimethyl piperidin-2-yl) methyl]-4-ethyl sulphonyl aniline, was docked using commercial Maestro Schrodinger software to predict the results.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2925DOI Listing

Publication Analysis

Top Keywords

physicochemical properties
8
drug score
8
score toxicity
8
toxicity predictions
8
diabetes mellitus
8
sulphur compounds
8
n-[33-dimethyl piperidin-2-yl
8
piperidin-2-yl methyl]-4-ethyl
8
methyl]-4-ethyl sulphonyl
8
sulphonyl aniline
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!