Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172710PMC
http://dx.doi.org/10.1007/s11307-021-01625-wDOI Listing

Publication Analysis

Top Keywords

correction cross-modality
4
cross-modality imaging
4
imaging murine
4
murine tumor
4
tumor vasculature-a
4
vasculature-a feasibility
4
feasibility study
4
correction
1
imaging
1
murine
1

Similar Publications

Robust quantification of pulmonary emphysema on computed tomography (CT) remains challenging for large-scale research studies that involve scans from different scanner types and for translation to clinical scans. Although the domain shifts in different CT scanners are subtle compared to shifts existing in other modalities (e.g.

View Article and Find Full Text PDF

In multi-modal magnetic resonance imaging (MRI), the tasks of imputing or reconstructing the target modality share a common obstacle: the accurate modeling of fine-grained inter-modal differences, which has been sparingly addressed in current literature. These differences stem from two sources: 1) spatial misalignment remaining after coarse registration and 2) structural distinction arising from modality-specific signal manifestations. This paper integrates the previously separate research trajectories of cross-modality synthesis (CMS) and multi-contrast super-resolution (MCSR) to address this pervasive challenge within a unified framework.

View Article and Find Full Text PDF

An Immunofluorescence-Guided Segmentation Model in Hematoxylin and Eosin Images Is Enabled by Tissue Artifact Correction Using a Cycle-Consistent Generative Adversarial Network.

Mod Pathol

November 2024

Department of Research Pathology, Genentech Inc, South San Francisco, California; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.

Despite recent advances, the adoption of computer vision methods into clinical and commercial applications has been hampered by the limited availability of accurate ground truth tissue annotations required to train robust supervised models. Generating such ground truth can be accelerated by annotating tissue molecularly using immunofluorescence (IF) staining and mapping these annotations to a post-IF hematoxylin and eosin (H&E) (terminal H&E) stain. Mapping the annotations between IF and terminal H&E increases both the scale and accuracy by which ground truth could be generated.

View Article and Find Full Text PDF

Single-Photon Emission Computed Tomography (SPECT) is widely applied for the diagnosis of coronary artery diseases. Low-dose (LD) SPECT aims to minimize radiation exposure but leads to increased image noise. Limited-view (LV) SPECT, such as the latest GE MyoSPECT ES system, enables accelerated scanning and reduces hardware expenses but degrades reconstruction accuracy.

View Article and Find Full Text PDF

Multi-class cell segmentation in high-resolution Giga-pixel whole slide images (WSI) is critical for various clinical applications. Training such an AI model typically requires labor-intensive pixel-wise manual annotation from experienced domain experts (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!