Background: Antibiotic tolerance allows bacteria to overcome antibiotic treatment transiently and potentially accelerates the emergence of resistance. However, our understanding of antibiotic tolerance at the genetic level during adaptive evolution of Staphylococcus aureus remains incomplete. We sought to identify the mutated genes and verify the role of these genes in the formation of vancomycin tolerance in S. aureus.
Methods: Vancomycin-susceptible S. aureus strain Newman was used to induce vancomycin-tolerant isolates in vitro by cyclic exposure under a high concentration of vancomycin (20× MIC). WGS and Sanger sequencing were performed to identify the genetic mutations. The function of mutated genes in vancomycin-tolerant isolates were verified by gene complementation. Other phenotypes of vancomycin-tolerant isolates were also determined, including mutation frequency, autolysis, lysostaphin susceptibility, cell wall thickness and cross-tolerance.
Results: A series of vancomycin-tolerant S. aureus (VTSA) strains were isolated and 18 mutated genes were identified by WGS. Among these genes, pbp4, htrA, stp1, pth and NWMN_1068 were confirmed to play roles in VTSA formation. Mutation of mutL promoted the emergence of VTSA. All VTSA showed no changes in growth phenotype. Instead, they exhibited reduced autolysis, decreased lysostaphin susceptibility and thickened cell walls. In addition, all VTSA strains were cross-tolerant to antibiotics targeting cell wall synthesis but not to quinolones and lipopeptides.
Conclusions: Our results demonstrate that genetic mutations are responsible for emergence of phenotypic tolerance and formation of vancomycin tolerance may lie in cell wall changes in S. aureus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/dkab260 | DOI Listing |
Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.
View Article and Find Full Text PDFMol Plant
January 2025
College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China. Electronic address:
Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.
View Article and Find Full Text PDFAm J Case Rep
January 2025
Department of Neonatology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, China.
BACKGROUND Cleidocranial dysplasia (CCD) is a rare (1: 1 000 000) autosomal dominant congenital skeletal dysplasia characterized by widely patent calvarial sutures, clavicular hypoplasia, supernumerary teeth, and short stature. Only a minority of the cases are diagnosed early after birth. We present another case of proven CCD presenting with typical neonatal phenotype to promote awareness of this rare disorder.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Department of Dermatology and Venereology, Faculty of Medicine, University of Aleppo, Aleppo, Syria.
Background: Basal cell nevus syndrome, also known as Gorlin or Gorlin-Goltz syndrome, is a hereditary condition caused by mutation in the PATCHED gene. The syndrome presents with a wide range of clinical manifestations, including basal cell carcinomas, jaw cysts, and skeletal anomalies. Diagnosis is based on specific criteria, and treatment typically includes surgical removal of basal cell carcinomas.
View Article and Find Full Text PDFVirol J
January 2025
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.
Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!