A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Potassium supply modulates Eucalyptus leaf water-status under PEG-induced osmotic stress: integrating leaf gas exchange, carbon and nitrogen isotopic composition and plant growth. | LitMetric

The objective of this study was to quantify the effect of potassium (K) supply on osmotic adjustment and drought avoidance mechanisms of Eucalyptus seedlings growing under short-term water stress. The effects of K supply on plant growth, nutritional status, leaf gas exchange parameters, leaf water potential (Ψw), leaf area (LA), stomatal density (SD), leaf carbon (C) and nitrogen (N) isotopic compositions (δ13C and δ15N ‰) and leaf C/N ratio under polyethylene glycol (PEG)-induced water deficit were measured. Under both control (non-PEG) and osmotic stress (+PEG) conditions, K supply increased plant growth, boosting dry matter yield with decreased C/N leaf ratio and δ15N ‰ values. The +PEG significantly reduced LA, plant growth, dry matter yield, Ψw, number of stomata per plant and leaf gas exchange, relative to non-PEG condition. Potassium supply alleviated osmotic-induced alterations in Eucalyptus seedlings by better regulating leaf development as well as SD, thus improving the rate of leaf gas exchange parameters, mesophyll conductance to CO2 (lower δ13C ‰ values) and water use efficiency (WUE). Consequently, K-supplied plants under drought better acclimated to osmotic stress than K-deficient plants, which in turn induced lower CO2 assimilation and dry matter yield, as well as higher leaf δ13C ‰ and δ15N ‰ values. In conclusion, management practices should seek to optimize K-nutrition to improve WUE, photosynthesis-related parameters and plant growth under water deficit conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpab095DOI Listing

Publication Analysis

Top Keywords

plant growth
20
leaf gas
16
gas exchange
16
potassium supply
12
leaf
12
osmotic stress
12
δ15n ‰
12
dry matter
12
matter yield
12
‰ values
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!