Virus-like particles are an emerging class of nano-biotechnology with the Tobacco Mosaic Virus (TMV) having found a wide range of applications in imaging, drug delivery, and vaccine development. TMV is typically produced in planta, and, as an RNA virus, is highly susceptible to natural mutation that may impact its properties. Over the course of 2 years, from 2018 until 2020, our laboratory followed a spontaneous point mutation in the TMV coat protein-first observed as a 30 Da difference in electrospray ionization mass spectrometry (ESI-MS). The mutation would have been difficult to notice by electrophoretic mobility in agarose or SDS-PAGE and does not alter viral morphology as assessed by transmission electron microscopy. The mutation responsible for the 30 Da difference between the wild-type (wTMV) and mutant (mTMV) coat proteins was identified by a bottom-up proteomic approach as a change from glycine to serine at position 155 based on collision-induced dissociation data. Since residue 155 is located on the outer surface of the TMV rod, it is feasible that the mutation alters TMV surface chemistry. However, enzyme-linked immunosorbent assays found no difference in binding between mTMV and wTMV. Functionalization of a nearby residue, tyrosine 139, with diazonium salt, also appears unaffected. Overall, this study highlights the necessity of standard workflows to quality-control viral stocks. We suggest that ESI-MS is a straightforward and low-cost way to identify emerging mutants in coat proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302582 | PMC |
http://dx.doi.org/10.1038/s41598-021-94561-2 | DOI Listing |
Carbohydr Polym
March 2025
Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
This study investigates the application of levan- produced from Paenibacillus polymyxa SG09-12 as an antiviral agent against cucumber mosaic virus (CMV). A high-purity microbial levan was produced and purified using diafiltration. The chemical composition, structure, and functional groups of the levan were characterised using high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFMol Divers
January 2025
State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
A series of flavonoid derivatives containing piperazine sulfonate were designed and synthesized. The results of antiviral experiments in vivo showed that some target compounds had good inhibitory effect on tobacco mosaic virus (TMV). The EC values of S15 and S19 curative activity were 174.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:
The prompt and efficient identification of targeted inhibitors against unscrupulous pathogenic viruses holds promise for preventing epidemic disease outbreaks. Herein, a comprehensive multichannel screening method (multiple docking cross-validation, molecular dynamics simulation, and density functional theory calculation) integrated with bioactivity identification is rationally established using sugar-based natural ligand libraries to target tobacco mosaic virus (TMV) capsid proteins. Encouragingly, compounds A0 (K = 0.
View Article and Find Full Text PDFMol Divers
January 2025
Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China.
In this paper, a series of oxadiazole/thidiazole containing coumarin derivative derivatives were designed, synthesized and characterized using NMR and HRMS. The evaluation of antiviral activity revealed that some of the synthesized compounds exhibited good in vivo antiviral efficacy against tobacco mosaic virus (TMV). Notably, compounds H6 and Y5 demonstrated exceptional therapeutic and protective effects against TMV, with EC values of 180.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Plant Sciences, Jilin University, Changchun 130062, China.
Tobacco mosaic virus (TMV) is a major threat to crops, making the discovery of green biopesticides essential. Herein, we present two active ingredients derived from the medicinal plant , findlayine A () and dendrofindline B (), as promising precursor compounds for TMV inhibitors. Among them, inhibited TMV infestation on tobacco leaves at a rate of 38.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!