Cortical oscillations have been proposed to play a functional role in speech and music perception, attentional selection, and working memory, via the mechanism of neural entrainment. One of the properties of neural entrainment that is often taken for granted is that its modulatory effect on ongoing oscillations outlasts rhythmic stimulation. We tested the existence of this phenomenon by studying cortical neural oscillations during and after presentation of melodic stimuli in a passive perception paradigm. Melodies were composed of ∼60 and ∼80 Hz tones embedded in a 2.5 Hz stream. Using intracranial and surface recordings in male and female humans, we reveal persistent oscillatory activity in the high-γ band in response to the tones throughout the cortex, well beyond auditory regions. By contrast, in response to the 2.5 Hz stream, no persistent activity in any frequency band was observed. We further show that our data are well captured by a model of damped harmonic oscillator and can be classified into three classes of neural dynamics, with distinct damping properties and eigenfrequencies. This model provides a mechanistic and quantitative explanation of the frequency selectivity of auditory neural entrainment in the human cortex. It has been proposed that the functional role of cortical oscillations is subtended by a mechanism of entrainment, the synchronization in phase or amplitude of neural oscillations to a periodic stimulation. One of the properties of neural entrainment that is often taken for granted is that its modulatory effect on ongoing oscillations outlasts rhythmic stimulation. Using intracranial and surface recordings of humans passively listening to rhythmic auditory stimuli, we reveal consistent oscillatory responses throughout the cortex, with persistent activity of high-γ oscillations. On the contrary, neural oscillations do not outlast low-frequency acoustic dynamics. We interpret our results as reflecting harmonic oscillator properties, a model ubiquitous in physics but rarely used in neuroscience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460151 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0213-21.2021 | DOI Listing |
Brain Res
December 2024
Human Neurophysiology and Neuromodulation Lab, Louisiana State University, Baton Rouge, LA, USA.
Transient disruption or permanent damage to the left Frontal Aslant Tract (FAT) is associated with deficits in speech production. The present study examined the application of theta (4 Hz) high-definition transcranial alternating current stimulation (HD-tACS) over the left SMA and IFG -as a part of FAT- as a potential multisite protocol to modulate neural and behavioral correlates of speech motor control. Twenty-one young adults participated in three counterbalanced sessions in which they received in-phase, anti-phase, and sham theta HD-tACS.
View Article and Find Full Text PDFEpilepsia
December 2024
Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
J Neural Eng
December 2024
Trinity College Dublin, College Green, Dublin 2, Dublin, D02 PN40, IRELAND.
Speech comprehension involves detecting words and interpreting their meaning according to the preceding semantic context. This process is thought to be underpinned by a predictive neural system that uses that context to anticipate upcoming words. Recent work demonstrated that such a predictive process can be probed from neural signals recorded during ecologically-valid speech listening tasks by using linear lagged models, such as the temporal response function.
View Article and Find Full Text PDFJ Neurosci
December 2024
Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France
Rhythm perception and synchronization to periodicity hold fundamental neurodevelopmental importance for language acquisition, musical behavior, and social communication. Rhythm is omnipresent in the fetal auditory world and newborns demonstrate sensitivity to auditory rhythmic cues. During the last trimester of gestation, the brain begins to respond to auditory stimulation and to code the auditory environment.
View Article and Find Full Text PDFCereb Cortex
December 2024
Institute for the Interdisciplinary Study of Language Evolution, University of Zurich, Affolternstrasse 56, 8050 Zürich, Switzerland.
Models of phonology posit a hierarchy of prosodic units that is relatively independent from syntactic structure, requiring its own parsing. It remains unexplored how this prosodic hierarchy is represented in the brain. We investigated this foundational question by means of an electroencephalography (EEG) study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!