Poly(ionic) liquid (PIL) augmented membranes were fabricated through self-polymerization of 2-vinyl pyridine and 4-vinyl pyridine followed by dopamine triggered polymerization and bridging with inert polyamide support. The resulting membranes acquired a positive surface charge with a high degree of hydrophilicity. Fourier transformed Infra-red (FTIR) and Energy dispersive X-ray (EDX) spectroscopic investigation revealed the successful augmentation of PIL surface layer, whereas surface morphology was investigated through scanning electron microscopy (SEM) imaging. This manuscript demonstrates pi electron-induced separation of dyes with the trend in permeability: Coomassie Brilliant Blue G (CBBHG) > Remazol Brilliant Blue R (RBBR) > Eichrome Black T (EBT) > Congo Red (CR). CBBG exhibited extended conjugation over large aromatic domain. RBBR and EBT were associated withtheelectron-donating -NH group and electron-withdrawing -NO group, respectively, hence pi electron density on aromatic ring varied. The steric repulsion between two pairs of ortho hydrogens (Hs) in biphenyl moieties of CR resulted in deviation of planarity and hence aromaticity leading to the lowest permeability. The sugar fractionation followed the trend: Galactose > Mannose > Fructose > Glucose > Xylose. More hydroxyl (-OH) groups in sugars and their conformational alignment in the same direction, exhibited more lone pair of electrons leading to more interaction with PIL and hence better permeability. Pentose showed poorer permeation than hexose, whereas aldose showed better permeation than ketose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309568PMC
http://dx.doi.org/10.3390/polym13142366DOI Listing

Publication Analysis

Top Keywords

polyionic liquid
8
augmented membranes
8
brilliant blue
8
novel polyionic
4
liquid augmented
4
membranes unconventional
4
unconventional aqueous
4
aqueous phase
4
phase applications
4
applications fractionation
4

Similar Publications

Polymer Sorbent Design for the Direct Air Capture of CO.

ACS Appl Polym Mater

December 2024

School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States.

Anthropogenic activities have resulted in enormous increases in atmospheric CO concentrations particularly since the onset of the Industrial Revolution, which have potential links with increased global temperatures, rising sea levels, increased prevalence, and severity of natural disasters, among other consequences. To enable a carbon-neutral and sustainable society, various technologies have been developed for CO capture from industrial process streams as well as directly from air. Here, direct air capture (DAC) represents an essential need for reducing CO concentration in the atmosphere to mitigate the negative consequences of greenhouse effects, involving systems that can reversibly adsorb and release CO, in which polymers have played an integral role.

View Article and Find Full Text PDF

Bifunctional Electrospun Nanocomposite Dressing: Integrating Antibacterial Efficacy and Controllable Antioxidant Properties for Expedited Wound Healing.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.

Current wound dressings are insufficient in simultaneously addressing bacterial infections and oxidative stress, which severely affects wound healing outcomes. To solve this problem, we introduced poly(ionic liquid) (PIL) with strong antibacterial properties and cerium oxide nanoparticles (CeONPs) with excellent antioxidant capabilities into polyacrylonitrile (PAN) nanofiber membranes to prepare a novel composite dressing. The PIL-CeONPs-PAN nanofiber membrane provides sustained antibacterial activity through stably embedded PIL, while the uniformly distributed CeONPs achieve controlled release, avoiding safety issues caused by the rapid release of active substances.

View Article and Find Full Text PDF

High ionic conductivity poly(ionic liquid)s (PILs) are of growing interest for their thermal and electrochemical stability, processability, and potential in safe, flexible all-solid-state electrochemical devices. While various approaches to enhance the ionic conductivity are reported, the influence of cation substituents is rarely addressed. Moreover, some of the asymmetric anions recently developed for high-conductivity ionic liquids were never tested in PILs.

View Article and Find Full Text PDF

The development of polysaccharide-based wound dressings that are easy to prepare, adhere to tissue, adapt to diverse shapes and exhibit tunable mechanical properties holds significant clinical interest. This study introduced a simple spontaneous liquid-liquid phase separation technique employing low-molecular-weight and high polyion concentration of chitosan (CS) and hyaluronic acid (HA) to fabricate CS/HA coacervates. Upon increasing the molecular weight of chitosan from 7 kDa to 250 kDa, a transition in the CS/HA coacervates from liquid-like state to an elastic liquid and eventually to a solid-like state was observed.

View Article and Find Full Text PDF

Polymer-in-salt electrolytes were introduced three decades ago as an innovative solution to the challenge of low Li-ion conductivity in solvent-free solid polymer electrolytes. Despite significant progress, the approach still faces considerable challenges, ranging from a fundamental understanding to the development of suitable polymers and salts. A critical issue is maintaining both the stability and high conductivity of molten salts within a polymer matrix, which has constrained their further exploration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!