The use of biomaterials as a replacement for thermoplastic polymers is an environmentally sound strategy. In this work, hydrogels of cellulose isolated from wheat husk were modified by UV irradiation (353 nm) to improve mechanical performance. The cellulose was dissolved with a solvent system -dimethylacetamide/lithium chloride (DMAc/LiCl). Infrared spectroscopy showed that the peak height at 1016 cm, associated with the C-O bonds of the glycosidic ring, increases with irradiation time. It was determined that the increase in this signal is related to photodegradation, the product of a progressive increase in exposure to UV radiation. The viscoelastic behavior, determined by dynamic mechanical analysis and rotational rheometry, was taken as the most important parameter of this research, showing that the best results are recorded with 15 min of UV treatment. Therefore, at this time or less, the chemical crosslinking is predominant over the photodegradation, producing an increase in the modules, while with 20 min the photodegradation is such that the modules suffer a significant reduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309531 | PMC |
http://dx.doi.org/10.3390/polym13142342 | DOI Listing |
Small
January 2025
Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
Precisely crafted hierarchical architectures found in naturally derived biomaterials underpin the exceptional performance and functionality showcased by the host organism. In particular, layered helical assemblies composed of cellulose, chitin, or collagen serve as the foundation for some of the most mechanically robust and visually striking natural materials. By utilizing structured materials in additive manufacturing techniques such as extrusion-based 3D printing, the intrinsic deformation process can be used to implement bottom-up design of printed constructs, offering the potential to create intricate macroscale geometries with embedded nanoscale functionality.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Civil Engineering Department, Düzce University, Duzce, Turkey. Electronic address:
Materials (Basel)
December 2024
Department of Civil and Environmental Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea.
The microstructural evolution and hydration behaviors of cement composites incorporating three natural fibers (abaca, hemp, and jute) were investigated in this study. Mercury intrusion porosimetry was used to assess the microstructural changes, focusing on the pore-size distribution and total porosity. Additionally, the hydration characteristics were analyzed using setting time measurements and isothermal calorimetry to track the heat flow and reaction kinetics during cement hydration.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Jung-gu, Seoul 04620, Republic of Korea.
In this study, epoxy-based composites were fabricated using a layer-by-layer assembly technique, and their mechanical properties were systematically evaluated. The inclusion of cellulose nanocrystals led to variations in the mechanical properties of the composites. These modified properties were assessed through tensile and flexural tests, with each layer cast to enhance strength.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, National Research Centre, Dokki, Egypt.
This paper contributes to the expanding knowledge base on nanomaterial-enhanced cementitious composites, offering valuable insights for developing high-performance, sustainable concrete solutions. The study assessed the effects of three different types of nanomaterials-nano clay (NC), nano silica (NS), and nano cellulose (NCel)-on the compressive strength of high-early-strength concrete (HESC) through both experimental studies and a 2 factorial design. Incorporating nanomaterials into the HESC matrix led to a decrease in workability, with NCel demonstrating the least impact on this property across all studied replacement percentages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!