Curing of Cellulose Hydrogels by UV Radiation for Mechanical Reinforcement.

Polymers (Basel)

Centro de Investigación en Materiales Avanzados, SC, Department of Engineering and Materials Chemistry, Miguel de Cervantes No. 120, Complejo de Industrial Chihuahua, Chihuahua CP 31136, Mexico.

Published: July 2021

The use of biomaterials as a replacement for thermoplastic polymers is an environmentally sound strategy. In this work, hydrogels of cellulose isolated from wheat husk were modified by UV irradiation (353 nm) to improve mechanical performance. The cellulose was dissolved with a solvent system -dimethylacetamide/lithium chloride (DMAc/LiCl). Infrared spectroscopy showed that the peak height at 1016 cm, associated with the C-O bonds of the glycosidic ring, increases with irradiation time. It was determined that the increase in this signal is related to photodegradation, the product of a progressive increase in exposure to UV radiation. The viscoelastic behavior, determined by dynamic mechanical analysis and rotational rheometry, was taken as the most important parameter of this research, showing that the best results are recorded with 15 min of UV treatment. Therefore, at this time or less, the chemical crosslinking is predominant over the photodegradation, producing an increase in the modules, while with 20 min the photodegradation is such that the modules suffer a significant reduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309531PMC
http://dx.doi.org/10.3390/polym13142342DOI Listing

Publication Analysis

Top Keywords

curing cellulose
4
cellulose hydrogels
4
hydrogels radiation
4
radiation mechanical
4
mechanical reinforcement
4
reinforcement biomaterials
4
biomaterials replacement
4
replacement thermoplastic
4
thermoplastic polymers
4
polymers environmentally
4

Similar Publications

Precisely crafted hierarchical architectures found in naturally derived biomaterials underpin the exceptional performance and functionality showcased by the host organism. In particular, layered helical assemblies composed of cellulose, chitin, or collagen serve as the foundation for some of the most mechanically robust and visually striking natural materials. By utilizing structured materials in additive manufacturing techniques such as extrusion-based 3D printing, the intrinsic deformation process can be used to implement bottom-up design of printed constructs, offering the potential to create intricate macroscale geometries with embedded nanoscale functionality.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how Poly(ethylene-co-(acrylic acid)) and maleic anhydride influence the properties of EPDM elastomers filled with cellulose and lignin.
  • Adding these compounds improved thermal stability and elongation, while slowing down the vulcanization process.
  • Maleic anhydride particularly enhanced tensile strength due to better chain mobility and stress transfer, making these modified elastomers beneficial for industrial applications involving biopolymers.
View Article and Find Full Text PDF

Microstructural Characteristics of Cellulosic Fiber-Reinforced Cement Composite.

Materials (Basel)

December 2024

Department of Civil and Environmental Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea.

The microstructural evolution and hydration behaviors of cement composites incorporating three natural fibers (abaca, hemp, and jute) were investigated in this study. Mercury intrusion porosimetry was used to assess the microstructural changes, focusing on the pore-size distribution and total porosity. Additionally, the hydration characteristics were analyzed using setting time measurements and isothermal calorimetry to track the heat flow and reaction kinetics during cement hydration.

View Article and Find Full Text PDF

Modulated Mechanical Properties of Epoxy-Based Hybrid Composites via Layer-by-Layer Assembly: An Experimental and Numerical Study.

Polymers (Basel)

December 2024

Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Jung-gu, Seoul 04620, Republic of Korea.

In this study, epoxy-based composites were fabricated using a layer-by-layer assembly technique, and their mechanical properties were systematically evaluated. The inclusion of cellulose nanocrystals led to variations in the mechanical properties of the composites. These modified properties were assessed through tensile and flexural tests, with each layer cast to enhance strength.

View Article and Find Full Text PDF

This paper contributes to the expanding knowledge base on nanomaterial-enhanced cementitious composites, offering valuable insights for developing high-performance, sustainable concrete solutions. The study assessed the effects of three different types of nanomaterials-nano clay (NC), nano silica (NS), and nano cellulose (NCel)-on the compressive strength of high-early-strength concrete (HESC) through both experimental studies and a 2 factorial design. Incorporating nanomaterials into the HESC matrix led to a decrease in workability, with NCel demonstrating the least impact on this property across all studied replacement percentages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!