The purpose of this study was to improve the dielectric, magnetic, and thermal properties of polytetrafluoroethylene (PTFE) composites using recycled FeO (rFeO) nanofiller. Hematite (FeO) was recycled from mill scale waste and the particle size was reduced to 11.3 nm after 6 h of high-energy ball milling. Different compositions (5-25 wt %) of rFeO nanoparticles were incorporated as a filler in the PTFE matrix through a hydraulic pressing and sintering method in order to fabricate rFeO-PTFE nanocomposites. The microstructure properties of rFeO nanoparticles and the nanocomposites were characterized through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The thermal expansion coefficients (CTEs) of the PTFE matrix and nanocomposites were determined using a dilatometer apparatus. The complex permittivity and permeability were measured using rectangular waveguide connected to vector network analyzer (VNA) in the frequency range 8.2-12.4 GHz. The CTE of PTFE matrix decreased from 65.28×10-6/°C to 39.84×10-6/°C when the filler loading increased to 25 wt %. The real (') and imaginary (″) parts of permittivity increased with the rFeO loading and reached maximum values of 3.1 and 0.23 at 8 GHz when the filler loading was increased from 5 to 25 wt %. A maximum complex permeability of 1.1-j0.07 was also achieved by 25 wt % nanocomposite at 10 GHz.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309594 | PMC |
http://dx.doi.org/10.3390/polym13142332 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
Achieving high product selectivity at ampere-level current densities is essential for the industrial application of electrochemical CO reduction. However, the operational stability of CO electrolyzers at large current density has long been hindered by flooding of gas diffusion layer (GDL). Herein, a new heteroarchitectural GDL is designed to overcome flooding.
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Department of Orthodontics, Osaka Dental University, Hirakata, Japan.
Purpose: To perform vertical bone augmentation on rat parietal bone by coating the inner surface of dense polytetrafluoroethylene (d-PTFE) domes with hydroxyapatite (HA) using Erbium Yttrium Aluminum Garnet (Er:YAG) pulsed laser deposition in a rat model.
Methods: The d-PTFE plate surface, α-tricalcium phosphate (α-TCP) coating, and HA coating were measured using scanning electron microscopy and X-ray diffraction to confirm the replacement of α-TCP with HA via high-pressure steam sterilization. The dome was glued to the center of the rat parietal bone and closed with periosteal and epithelial sutures.
Nat Commun
January 2025
Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
Liquid organic hydrogen carriers (LOHCs) are considered promising carriers for large-scale H storage and transportation, among which the toluene-methylcyclohexane cycle has attracted great attention from industry and academia because of the low cost and its compatibility with the current infrastructure facility for the transportation of chemicals. The large-scale deployment of the H storage/transportation plants based on the toluene-methylcyclohexane cycle relies on the use of high-performance catalysts, especially for the H release process through the dehydrogenation of methylcyclohexane. In this work, we have developed a highly efficient catalyst for MCH dehydrogenation reaction by incorporating subnanometer PtFe clusters with precisely controlled composition and location within a rigid zeolite matrix.
View Article and Find Full Text PDFTalanta
April 2025
National Centre for Compositional Characterization of Materials (NCCCM), Bhabha Atomic Research Centre, Department of Atomic Energy, Hyderabad, 500 062, India.
A new and high performance polytetrafluoroethylene (PTFE) digestor was designed and fabricated in-house for the total dissolution of granite samples for the determination of technology-critical elements (TCEs) by inductively coupled plasma optical emission spectrometry (ICP-OES). Initially, the granite sample (∼0.25 g) was placed in the PTFE digestor and added 8 mL(v/v) of 20%HF+40%HCl+10%HNO acid mixture.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
With the rapid development of the aerospace, automobile, and ocean industries, there is an urgent need for the fabrication of high-performance polymer matrix composites with low friction and wear in wide temperature ranges. In this paper, polytetrafluoroethylenes (PTFEs) doped with polyether-ether-ketone (PEEK), carbon fiber (CF), and TiC were prepared, and the effects of testing temperatures from room temperature to 250 °C in air conditions were investigated. The results showed that the friction coefficient of the PTFE matrix composites had no obviously changing trend, while the wear resistance properties were significantly improved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!