The solubility and interdiffusion of polystyrene (PS) with polymethyl acrylate (PMA), polyethyl acrylate (PEA), polybutyl acrylate (PBA), and polyethylhexyl acrylate (PEHA) have been studied by the optical interferometry method. Phase state diagrams are plotted. It is shown that they are characterized by the upper critical solution temperatures (UCST), which are localized in the temperature range above 450 K. Pair interaction parameters and their temperature dependences are determined and analyzed. Extrapolation of the temperature dependence of the interaction parameter was used to construct the dome of binodal curves and determine the spinodal curves in the framework of the Flory-Huggins theory. The diffusion coefficients of polystyrene into polyacrylates and polyacrylates into polystyrene are calculated. The dependences of the interdiffusion coefficients on the concentration, temperature, polystyrene molecular weight, and the number of carbons in the side chain of polyacrylate are analyzed. The numerical values of the interdiffusion coefficients of PS-1 into polyacrylates at 433 K change as -8.5 → -6.7 → -6.4 in the homologous series PMA → PEA → PBA. The coefficients of friction are calculated and the effect of change in the matrix structure on the diffusion of polystyrene in them is estimated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309325 | PMC |
http://dx.doi.org/10.3390/polym13142283 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!