The aim of the research was to determine the effect of soil contamination with diesel oil (0; 5; 10 and 15 cm kg of soil) on the content of trace elements in the aboveground parts of oat ( L.). Stabilised sewage sludge was used to mitigate the likely negative impact of diesel oil on the plant. Growing soil contamination with diesel oil had a significant impact on the content of trace elements in the aboveground biomass of oat. In the series without sewage sludge, the contents of the analysed elements, except for chromium, zinc, copper and cobalt, were positively correlated with the increasing doses of diesel oil. The largest increase in the content was recorded in the case of manganese. The sewage sludge used to reduce the influence of diesel oil on the chemical composition of oat had a positive effect on the content of the analysed trace elements. Compared to the series without the addition of a stabilised sewage sludge, it contributed to a reduction in the average content of chromium, nickel, copper, manganese and cobalt in the aboveground parts of oat plants. No significant effect of the applied remediation treatment was noted for cadmium, and the results were equivocal for iron.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304387 | PMC |
http://dx.doi.org/10.3390/ma14144003 | DOI Listing |
Int J Environ Res Public Health
December 2024
Institute of Integrated Atmospheric Environment, 1-2-8 Koraku, Bunkyo, Tokyo 112-0004, Japan.
Concerns regarding the health risks associated with employe exposure to volatile chemicals during gasoline refueling necessitates rigorous investigation and effective countermeasures. This study aims to evaluate the efficacy of vapor recovery systems in mitigating exposure risks during gasoline refueling. Employee exposure to volatile organic compounds, aldehydes, carbon monoxide, and fine particulate matter (PM) was assessed at gasoline stations with and without vapor recovery systems.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Inorganic and Organic Chemistry, University Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
In this work, a series of BaMnCuO samples (x: 1, 0.9, 0.8, and 0.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, PR China.
Sulfur-containing gases produced during the utilization of petroleum fuels are the main cause of air pollution. To remove organic sulfur-containing compounds from simulated gasoline, magnetic hydrophobic Cu-containing SBA-15 mesoporous molecular sieves (PMS-Cu) were prepared by magnetization of the sample, loading and reduction of copper ion and hydrophobic treatment of the sample. The composition and structure of the synthesized composites were characterized by XRD, FTIR, SEM, TEM, and XPS, which proved the successful preparation of the adsorbent PMS-Cu.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, China.
Light nonaqueous-phase liquids (LNAPLs) are the main source of organic pollution in soil and groundwater environments. The capillary zone, with varying moisture contents, is the last barrier against the infiltration of LNAPL pollutants into groundwater and plays an important role in their migration and transformation. However, the effect and mechanism of the moisture content in the capillary zone on LNAPL pollutant migration are still unclear.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China. Electronic address:
Pickering emulsion template has aroused attention in the fabrication of porous composite materials. In this work, six nanoparticles including cellulose nanofiber/nanocrystal (CNF/CNC), chitin nanofiber/nanocrystals (ChNF/ChNC) and waxy/normal corn nanocrystal (WSNC/CSNC) were comparatively studied for their performance in fabricating porous composites with PDMS via Pickering emulsion templates. Among all, CNF and ChNF exhibited best emulsion stabilizing ability, while ChNF and ChNC at optimized concentrations enabled the formation of high internal phase emulsions with long-term stability of over 300 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!