Evaluation of Wear Behaviour in Metallic Binders Employed in Diamond Tools for Cutting Stone.

Materials (Basel)

IDMEC-Instituto de Engenharia Mecânica, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

Published: July 2021

A type of disc-on-plate test methodology was used to determine the wear behavior of metallic binders employed in the manufacturing of diamond impregnated tools. The disc consists of a special circular wheel that allows the binder materials alone (i.e., without diamond, but sintered under conditions identical to those of the complete tool) to be tested against a plate of stone material under pre-determined testing conditions. The testing conditions are intended to be equivalent to those used in the industrial processes. Using plates of five types of granite and one type of marble, this work comprises wear tests of 15 different types of metallic binders and two sintering modes conducted under, at least, three different values of contact-force. The analysis of the results demonstrated that the wear of the binders can be related to their mechanical properties through an empirical expression. The larger the difference between the characteristics of the tribological pair (binder versus stone), the higher is the correlation between the experimental wear data and the values given by the empirical expression. The relationships presented in this work allow predicting the wear behavior of the binder, and therefore may help in the design process of diamond tools. There was a clear difference between the wear behavior of metallic binders when they were employed against the two main classes of stone under analysis (marble and granite).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306793PMC
http://dx.doi.org/10.3390/ma14143988DOI Listing

Publication Analysis

Top Keywords

metallic binders
16
binders employed
12
wear behavior
12
diamond tools
8
behavior metallic
8
testing conditions
8
empirical expression
8
wear
6
binders
5
evaluation wear
4

Similar Publications

ToF-SIMS Parallel Imaging MS/MS of Lead Soaps in Embedded Paint Cross Sections.

Anal Chem

January 2025

Maastricht MultiModal Molecular Imaging (M4i) Institute, Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands.

In the field of cultural heritage, and more specifically in oil paintings, the ability to unambiguously identify and locate metal soaps is of great interest for a better understanding of painting degradation. Here, we demonstrate the use of a Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) instrument capable of tandem mass spectrometry imaging for the unambiguous identification and localization of lead soaps in cross sections of samples of old oil paintings at high spatial resolution. It is shown that the specific fragmentation pattern of lead soaps is dictated by the loss of the lead ion and that fragmentation occurs on the hydrocarbon chains of the fatty acids.

View Article and Find Full Text PDF

Synthesis of 2D NiCo-MOF/GO/CNTs flexible films for high-performance supercapacitors.

Soft Matter

January 2025

Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.

Article Synopsis
  • Researchers developed flexible hybrid films using nickel-cobalt metal-organic frameworks (2D NiCo-MOF), graphene oxide (GO), and carbon nanotubes (CNTs) as supercapacitor electrode materials via vacuum filtration.
  • The optimal mass ratio of these materials is 2:1:0.5, leading to a high specific capacitance of 40.3 F/g and impressive cycling stability, with 82.8% capacitance retention after 5000 cycles.
  • The films maintain flexibility even after multiple bends and can power an LED when connected in series, showcasing their practical application potential.
View Article and Find Full Text PDF

Solvent-Tuned Plasticity for Various Binder-Free Applications of a New Lead-Free Manganese Halide.

Adv Mater

December 2024

Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.

The development of efficient color conversion layers for μ-LED technology faces significant challenges owing to the limitations of materials that require binders. Binders are typically used to ensure uniform film formation in color-conversion layers, but they often cause optical losses, increase layer thickness, and introduce long-term stability issues. To address the limitations of materials requiring binders, cyclopropyltriphenylphosphonium manganese tetrabromide (CPTPMnBr) is synthesized, a novel lead-free metal halide.

View Article and Find Full Text PDF

This work aims at the effects of anion-exchange membranes (AEMs) and ionomer binders on the catalyst electrodes for anion-exchange membrane fuel cells (AEMFCs). In the experiments, four metal catalysts (nano-grade Pt, PtRu, PdNi and Ag), four AEMs (aQAPS-S8, AT-1, X37-50T and X37-50RT) and two alkaline ionomers (aQAPS-S14 and XB-7) were used. They were verified through several technical parameters examination and cell performance comparison for the optimal selection of AMEs.

View Article and Find Full Text PDF

Despite the widespread use of currently available serum phosphate management options, elevated serum phosphate is common in patients with end-stage kidney disease on dialysis. Characteristics of currently available phosphate binders that lead to poor patient experiences such as large drug volume size of required daily medication (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!