Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Autograft (AG) is the gold standard for bone grafts, but limited quantities and patient morbidity are associated with its use. AG extenders have been proposed to minimize the volume of AG while maintaining the osteoinductive properties of the implant. In this study, poly(ester urethane) (PEUR) and poly(thioketal urethane) (PTKUR) AG extenders were implanted in a 20-mm rabbit radius defect model to evaluate new bone formation and graft remodeling. Outcomes including µCT and histomorphometry were measured at 12 weeks and compared to an AG (no polymer) control. AG control examples exhibited new bone formation, but inconsistent healing was observed. The implanted AG control was resorbed by 12 weeks, while AG extenders maintained implanted AG throughout the study. Bone growth from the defect interfaces was observed in both AG extenders, but residual polymer inhibited cellular infiltration and subsequent bone formation within the center of the implant. PEUR-AG extenders degraded more rapidly than PTKUR-AG extenders. These observations demonstrated that AG extenders supported new bone formation and that polymer composition did not have an effect on overall bone formation. Furthermore, the results indicated that early cellular infiltration is necessary for harnessing the osteoinductive capabilities of AG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8305944 | PMC |
http://dx.doi.org/10.3390/ma14143960 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!