A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Corrosion Behaviour of High-Strength Al 7005 Alloy and Its Composites Reinforced with Industrial Waste-Based Fly Ash and Glass Fibre: Comparison of Stir Cast and Extrusion Conditions. | LitMetric

AI Article Synopsis

  • Research focuses on developing lightweight materials with better properties for engineering, using industrial wastes like fly ash (FA) and S-glass fibers (GF) as reinforcements in Al 7005 alloy.
  • Four samples were created through stir casting and then extruded to study their structure and corrosion resistance, with different extrusion ratios.
  • Results showed that Al 7005 + 6% FA had the highest corrosion resistance and that extrusion improved material properties, reducing corrosion rates compared to as-cast samples.

Article Abstract

The stringent demand to develop lightweight materials with enhanced properties suitable for various engineering applications is the focus of this research work. Industrial wastes such as fly ash (FA) and S-glass-fibres (GF) were used as reinforcement materials for high-strength alloy, i.e., Al 7005. Stir casting routes were employed for fabricating the four samples, Al 7005, Al 7005 + 5% GF, Al 7005 + 6% FA and Al 7005 + 5% GF + 6% FA. The extrusion process with different extrusion ratios (ER: 5.32:1, and 2.66:1) was used to examine the properties of all four samples. Extruded samples with ER: 5.32: 1 resulted in equiaxed grains with refined structure compared to stir casting parts. The effect of the extrusion process and the addition of reinforcements (GF and FA) on the gravimetric, electrochemical, and electrochemical impedance corrosion behaviour of Al 7005 composites in 1M HCl (Hydrochloric acid) solution were investigated. The results of all three corrosion methods showed that Al 7005 + 6% FA exhibited higher corrosion resistance. Corrosion rate of Al 7005, Al 7005 + 5% GF, Al 7005 + 6% FA and Al 7005 + 5% GF + 6% FA is found equal to 3.25, 2.41, 0.34, and 0.76 mpy, respectively. The FA particles remain inert and act as a physical barrier with corrosive media during the corrosion test. GF undergoes fibre degradation or disrupts the continuity of the glass network as a result of fibre leaching, which increases the corrosion rate in the sample. The gravimetric study showed that the corrosion rates decreased with an increase in extrusion ratio, which might be due to corrosion passivation increases and improved properties. The scanning electron microscopy reveals that corrosion fits, flakes and micro-cracks were observed more in the as-cast composites than that of extrusion composites, promoting the corrosion rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307554PMC
http://dx.doi.org/10.3390/ma14143929DOI Listing

Publication Analysis

Top Keywords

7005 7005
24
0
12
corrosion rate
12
corrosion
11
corrosion behaviour
8
fly ash
8
stir casting
8
extrusion process
8
extrusion
6
behaviour high-strength
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!