The change in the value of the breaking energy is discussed here for selected steel grades used in building structures after subjecting the samples made of them to episodes of heating in the steady-state heating regime and then cooling in simulated fire conditions. These changes were recorded based on the instrumented Charpy impact tests, in relation to the material initial state. The S355J2+N, 1H18N9T steels and also X2CrNiMoN22-5-3 duplex steel were selected for detailed analysis. The fire conditions were modelled experimentally by heating the samples and then keeping them for a specified time at a constant temperature of: 600 °C (first series) and 800 °C (second series), respectively. Two alternative cooling variants were investigated in the experiment: slow cooling of the samples in the furnace, simulating the natural fire progress, without any external extinguishing action and cooling in water mist simulating an extinguishing action by a fire brigade. The temperature of the tested samples was set at the level of -20 °C and alternatively at the level of +20 °C. The conducted analysis is aimed at assessing the risk of sudden, catastrophic fracture of load-bearing structure made of steel degraded as a result of a fire that occurred previously with different development scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304635PMC
http://dx.doi.org/10.3390/ma14143922DOI Listing

Publication Analysis

Top Keywords

selected steel
8
steel grades
8
based instrumented
8
fire conditions
8
extinguishing action
8
fire
5
post-fire susceptibility
4
susceptibility brittle
4
brittle fracture
4
fracture selected
4

Similar Publications

A Method for Determining the Minimum Thickness of the Cut Layer in Precision Milling.

Materials (Basel)

January 2025

Department of Machine Design and Manufacturing Engineering, Kielce University of Technology, al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland.

The minimum cutting thickness is a key value in machining processes, as below this value the material will only undergo elastic and plastic deformation without chip removal. Existing measurement methods require time-consuming preparation and complicated procedures. This work focuses on the development of a new, simplified method for determining the minimum cutting thickness (h) using a contact profilometer that can be used in industry.

View Article and Find Full Text PDF

Obtaining reliable dynamic mechanical properties through experiments is essential for developing and validating constitutive models in material selection and structural design. This study introduces a dynamic tensile method using a modified M-type specimen loaded by a split Hopkinson pressure bar (SHPB). A closed M-type specimen was thus employed.

View Article and Find Full Text PDF

Failure and Degradation Mechanisms of Steel Pipelines: Analysis and Development of Effective Preventive Strategies.

Materials (Basel)

December 2024

Hydrotechnical Unit, KGHM Polska Miedź S.A., Polkowicka 52, 59-305 Rudna, Poland.

The increasing challenges related to the reliability and durability of steel pipeline infrastructure necessitate a detailed understanding of degradation and failure mechanisms. This study focuses on selective corrosion and erosion as critical factors, analyzing their impact on pipeline integrity using advanced methods, including macroscopic analysis, corrosion testing, microscopic examination, tensile strength testing, and finite element method (FEM) modeling. Selective corrosion in the heat-affected zones (HAZs) of longitudinal welds was identified as the dominant degradation mechanism, with pit depths reaching up to 6 mm, leading to tensile strength reductions of 30%.

View Article and Find Full Text PDF

This study evaluates the API 650 design procedure for steel storage tanks, incorporating nonlinear dynamic analysis with large deformation effects. Focusing on seismic vulnerability, the case study examines storage tanks proposed for construction in Naples, Italy, assessing their performance under site-specific seismic conditions. A target spectrum and 20 earthquake records were selected to reflect regional seismic characteristics.

View Article and Find Full Text PDF

Variations in the microstructural morphology with building direction during selective laser melting (SLM) result in the anisotropic mechanical properties of the specimens, while heat treatment effectively reduces this anisotropy. The degree of anisotropy of the material can be assessed by calculating the variance (σ) of the mechanical properties (strength, hardness) at different building directions at different temperatures. In this work, the effects of heat treatment temperatures (450°, 750 °C, and 1050 °C) and building directions (0°, 45°, 60°, and 90°) on the microstructure, hardness, and tensile properties of selective laser melting (SLM) SS316L were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!