Microstructure and Properties of Electrodeposited Nanocrystalline Ni-Co-Fe Coatings.

Materials (Basel)

Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Kraków, Poland.

Published: July 2021

Materials based on Ni-Co-Fe alloys, due to their excellent magnetic properties, attract great attention in nanotechnology, especially as candidates for high-density magnetic recording media and other applications from spintronic to consumer electronics. In this study, Ni-Co-Fe nanocrystalline coatings were electrodeposited from citrate-sulfate baths with the Ni:Co:Fe ion concentration ratios equal to 15:1:1, 15:2:1, and 15:4:1. The effect of the composition of the bath on the morphology, microstructure, chemical composition, microhardness, and magnetic properties of the coatings was examined. Scanning (SEM) and transmission (TEM) electron microscopy, X-ray diffractometry (XRD), and energy dispersive X-ray spectroscopy (EDS) were used to study surface morphology, microstructure, chemical, and phase composition. Isothermal cross-sections of the Ni-Co-Fe ternary equilibrium system for the temperature of 50 °C and 600 °C were generated using the FactSage package. Magnetic properties were analyzed by a superconducting quantum interference device magnetometer (SQUID). All the coatings were composed of a single phase being face-centered cubic (fcc) solid solution. They were characterized by a smooth surface with globular morphology and a nanocrystalline structure of grain diameter below 30 nm. It was determined that Ni-Co-Fe coatings exhibit high hardness above 4.2 GPa. The measurements of hysteresis loops showed a significant value of magnetization saturation and small coercivity. The microstructure and properties of the obtained nanocrystalline coatings are interesting in terms of their future use in micromechanical devices (MEMS).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329923PMC
http://dx.doi.org/10.3390/ma14143886DOI Listing

Publication Analysis

Top Keywords

magnetic properties
12
microstructure properties
8
ni-co-fe coatings
8
nanocrystalline coatings
8
morphology microstructure
8
microstructure chemical
8
coatings
6
ni-co-fe
5
microstructure
4
properties electrodeposited
4

Similar Publications

Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) causes prominent deposition of extracellular matrix molecules, particularly the chondroitin sulphate proteoglycan (CSPG) member neurocan. In tissue culture, neurocan impedes the properties of oligodendrocytes. Whether therapeutic reduction of neurocan promotes oligodendrogenesis and functional recovery in ICH is unknown.

View Article and Find Full Text PDF

Background: Thalamocortical functional and structural connectivity alterations may contribute to clinical phenotype of Autism Spectrum Disorder. As previous studies focused mainly on thalamofrontal connections, we comprehensively investigated between-group differences of thalamic functional networks and white matter pathways projecting also to temporal, parietal, occipital lobes and their associations with core and co-occurring conditions of this population.

Methods: A total of 38 children (19 with Autism Spectrum Disorder) underwent magnetic resonance imaging and behavioral assessment.

View Article and Find Full Text PDF

Solid magnetic liposomes (ML, nanocomposites comprising lipid bilayers that incorporate magnetic nanoparticles) may be used in wastewater remediation: the lipid bilayer creates an environment where organic pollutants preferentially partition instead of water and the manipulation of ML with an external magnet enables an easy recovery from water. This study aimed to assess the system's potential for water remediation, focusing on ML ability to remove common pollutants in industrial wastewater. Specifically, alkylphenol ethoxylates (APEO) were used as the archetype for organic pollutants.

View Article and Find Full Text PDF

The present work describes the process of the creation and analysis of the first dataset containing processing parameters and functional properties of soft magnetic composites (SMC). All data were obtained experimentally using Fe-3% MgO system. When creating samples, parameters such as a size of MgO nanoparticles, pressing pressure, sintering temperature, time and atmosphere were varied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!