In this study, the time-dependent mechanical behavior of the magnesium alloy sheet (AZ31B) was investigated through the creep and stress relaxation tests with respect to the temperature and pre-strain. The microstructure changes during creep and stress relaxation were investigated. As the tensile deformation increased in the material, twinning and dynamic recrystallization occurred, especially after the plastic instability. As a result, AZ31B showed lower resistance to creep and stress relaxation due to dynamic recrystallization. Additionally, time-dependent springback characteristics in the V- and L-bending processes concerning the holding time and different forming conditions were investigated. We analyzed changes of microstructure at each forming temperature and process. The uniaxial tensile creep test was conducted to compare the microstructures in various pre-strain conditions with those at the secondary creep stage. For the bending process, the change of the microstructure after the forming was compared to that with punch holding maintained for 1000 s after forming. Due to recrystallization, with the holding time in the die set of 60 s, the springback angle decreased by nearly 70%. Increased holding time in the die set resulted in a reduced springback angle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303205PMC
http://dx.doi.org/10.3390/ma14143856DOI Listing

Publication Analysis

Top Keywords

creep stress
12
stress relaxation
12
holding time
12
study time-dependent
8
time-dependent mechanical
8
mechanical behavior
8
magnesium alloy
8
alloy sheet
8
sheet az31b
8
dynamic recrystallization
8

Similar Publications

Description of steady-state creep rate with continuously varying stress sensitivity parameter and upper limits of applied stress.

Heliyon

January 2025

Dept. of Mathematics and Physics, Military Technology Faculty, University of Defence, Kounicova 65, CZ-662 10, Brno, Czech Republic.

The steady-state creep rate increases with working temperature according to the Arrhenius law and with applied stress according to the power law. The dependence on both the variables is usually expressed as the product of the Arrhenius law and the power law, where a constant value of the apparent activation energy is assumed. As the exponent of the power law, called the stress sensitivity parameter and dependent on the deformation micromechanism, a specific integer is taken.

View Article and Find Full Text PDF

Effect of Temperature and Stress on Creep Behavior of (TiB + TiC + YO)/α-Ti Composite.

Materials (Basel)

December 2024

National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China.

In this study, a (TiB + TiC + YO)/α-Ti composite was prepared by induction skull melting to investigate its creep behavior and microstructure evolution under different temperatures and stresses. The results show that the microstructure of the composite in the as-cast state is a basket-weave structure, and the main phase composition is α lamella, containing a small amount of β phase and equiaxed α phase. The creep life of the composite decreases significantly when the temperature is increased from 650 °C to 700 °C, and the steady-state creep rate is increased by 1 to 2 orders of magnitude.

View Article and Find Full Text PDF

Corrosion in reinforced concrete (RC) structures has led to the increased adoption of non-corrosive materials, such as carbon fiber-reinforced polymers (CFRPs), as replacements for traditional steel rebar. However, ensuring the long-term reliability of CFRP grids under sustained stress is critical for achieving safe and effective designs. This study investigates the long-term tensile creep rupture behavior of CFRP grids to establish a design threshold for their tensile strength under sustained loading conditions in demanding structural applications.

View Article and Find Full Text PDF

Metastable state preceding shear zone instability: Implications for earthquake-accelerated landslides and dynamic triggering.

Proc Natl Acad Sci U S A

January 2025

Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.

Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.

View Article and Find Full Text PDF

Excavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!