Springback Prediction for Pure Moment Bending of Aluminum Alloy Square Tube.

Materials (Basel)

Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland.

Published: July 2021

The springback phenomenon occurring during cold forming is the main problem affecting the dimensional accuracy of bent products, especially when bending thin-walled profiles, where there are significant changes in the cross-section geometry. This article presents the results of the analysis of the springback phenomenon occurring during shaping with a pure bending moment of square tubes with the cross-sectional dimensions of 21.5 × 21.5 × 1.8 mm and 25 × 25 × 2.5 mm made of aluminum alloy 6060. The springback characteristics were determined by defining the dependence of the springback coefficient on the set bending radius of the band. The values of the springback coefficient were provided by means of analytical calculations and numerical modeling, which considered changes in the moment of inertia caused by deformation of the cross-section occurring during bending of the pipes. A good agreement of the calculation results with the results of experimental tests was obtained. In addition, the stress state and the state of deformation, as well as the springback characteristics of square-section pipes were compared with the results obtained during bending of a solid bar with the cross-sectional dimensions of 21.5 × 21.5 mm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303473PMC
http://dx.doi.org/10.3390/ma14143814DOI Listing

Publication Analysis

Top Keywords

aluminum alloy
8
springback phenomenon
8
phenomenon occurring
8
cross-sectional dimensions
8
dimensions 215
8
215 215
8
springback characteristics
8
springback coefficient
8
springback
7
bending
6

Similar Publications

Laser surface alloying of Fe, Si, and C on aluminium is demonstrated using a Q-switched Nd:YAG laser as the source of energy. The fundamental wavelength of the laser beam was 1064 nm with an output energy of 100 mJ and a pulse duration of 10 ns. The exposure was conducted in repetitive mode with a frequency rate of 1 Hz.

View Article and Find Full Text PDF

This study provides a detailed characterization of the AA5083 aluminum alloy, surface, and interface over 6 months of immersion in seawater, employing techniques such as SEM/EDX, GIXRD, μ-Raman and XPS. The purpose was to evaluate the evolution of the biomineralization process that occurs on the Al-Mg alloy. By investigating the specific conditions that favor the in situ growth of layered double hydroxide (LDH) during seawater immersion as a result of biomineralization, this research provides insights into marine biomineralization, highlighting its potential as an innovative and sustainable strategy for corrosion protection.

View Article and Find Full Text PDF

Roll bonding of aluminum/magnesium laminates combines the good corrosion resistance of aluminum alloys with the beneficial mechanical properties of magnesium alloys. We studied the microstructure of aluminum Al-1051/AZ31 magnesium laminates fabricated by the roll-bonding process. The fabricated laminates were investigated in the as-fabricated condition and after subsequent stress relief annealing treatment at temperatures ranging from 200 °C to 400 °C.

View Article and Find Full Text PDF

This study investigates zone melting (ZM) as an innovative method for recycling 7000 series aluminum alloy scraps, a byproduct of computer numerical control (CNC) machining in smartphone production. Traditional fluxing methods are ineffective at removing Zn, a key alloying element. Vacuum atmospheric ZM utilizes the evaporation of Zn and Mg impurities and solidification segregation to concentrate elemental impurities within the melt, facilitating their efficient removal.

View Article and Find Full Text PDF

Solid-State Precipitation of Silver Nanoparticles Nucleated during Al Anodizing: Mechanism and Antibacterial Properties.

ACS Appl Bio Mater

January 2025

Laboratório de Processos Eletroquímicos e Corrosão-ELETROCORR, Departamento de Metalurgia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil.

This study presents an innovative approach to creating antibacterial aluminum surfaces by combining the antibacterial properties of silver nanoparticles (Ag NPs) with the nanoarchitecture of anodized aluminum oxide in one step. An Al-Ag alloy containing 10 wt % Ag was synthesized and anodized in 0.3 M oxalic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!