Wireless Sensor Networks (WSNs) continue to face two major challenges: energy and security. As a consequence, one of the WSN-related security tasks is to protect them from Denial of Service (DoS) and Distributed DoS (DDoS) attacks. Machine learning-based systems are the only viable option for these types of attacks, as traditional packet deep scan systems depend on open field inspection in transport layer security packets and the open field encryption trend. Moreover, network data traffic will become more complex due to increases in the amount of data transmitted between WSN nodes as a result of increasing usage in the future. Therefore, there is a need to use feature selection techniques with machine learning in order to determine which data in the DoS detection process are most important. This paper examined techniques for improving DoS anomalies detection along with power reservation in WSNs to balance them. A new clustering technique was introduced, called the CH_Rotations algorithm, to improve anomaly detection efficiency over a WSN's lifetime. Furthermore, the use of feature selection techniques with machine learning algorithms in examining WSN node traffic and the effect of these techniques on the lifetime of WSNs was evaluated. The evaluation results showed that the Water Cycle (WC) feature selection displayed the best average performance accuracy of 2%, 5%, 3%, and 3% greater than Particle Swarm Optimization (PSO), Simulated Annealing (SA), Harmony Search (HS), and Genetic Algorithm (GA), respectively. Moreover, the WC with Decision Tree (DT) classifier showed 100% accuracy with only one feature. In addition, the CH_Rotations algorithm improved network lifetime by 30% compared to the standard LEACH protocol. Network lifetime using the WC + DT technique was reduced by 5% compared to other WC + DT-free scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309769 | PMC |
http://dx.doi.org/10.3390/s21144821 | DOI Listing |
J Neurosurg Spine
January 2025
1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and.
Objective: Mixed-reality (MR) applications provide opportunities for technical rehearsal, education, and estimation of surgical performance without the risk of patient harm. In this study, the authors provide a structured literature review on the current state of MR applications and their effects on neurosurgery training. They also introduce an MR prototype for neurosurgical spine training.
View Article and Find Full Text PDFPLoS One
January 2025
LIB, Université de Bourgogne, Franche-Comté, Dijon, France.
The backbone extraction process is pivotal in expediting analysis and enhancing visualization in network applications. This study systematically compares seven influential statistical hypothesis-testing backbone edge filtering methods (Disparity Filter (DF), Polya Urn Filter (PF), Marginal Likelihood Filter (MLF), Noise Corrected (NC), Enhanced Configuration Model Filter (ECM), Global Statistical Significance Filter (GloSS), and Locally Adaptive Network Sparsification Filter (LANS)) across diverse networks. A similarity analysis reveals that backbones extracted with the ECM and DF filters exhibit minimal overlap with backbones derived from their alternatives.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science, National Textile University, Faisalabad, Pakistan.
Accurate diagnosis of pancreatic cancer using CT scan images is critical for early detection and treatment, potentially saving numerous lives globally. Manual identification of pancreatic tumors by radiologists is challenging and time-consuming due to the complex nature of CT scan images and variations in tumor shape, size, and location of the pancreatic tumor also make it challenging to detect and classify different types of tumors. Thus, to address this challenge we proposed a four-stage framework of computer-aided diagnosis systems.
View Article and Find Full Text PDFJpn J Radiol
January 2025
Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece.
Objective: Calcific tendinopathy, predominantly affecting rotator cuff tendons, leads to significant pain and tendon degeneration. Although US-guided percutaneous irrigation (US-PICT) is an effective treatment for this condition, prediction of patient' s response and long-term outcomes remains a challenge. This study introduces a novel radiomics-based model to forecast patient outcomes, addressing a gap in the current predictive methodologies.
View Article and Find Full Text PDFJ Med Syst
January 2025
Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!