Multibody modeling of mechanical systems can be applied to various applications. Human-in-the-loop interfaces represent a growing research field, for which increasingly more devices include a dynamic multibody model to emulate the system physics in real-time. In this scope, reliable and highly dynamic sensors, to both validate those models and to measure in real-time the physical system behavior, have become crucial. In this paper, a multibody modeling approach in relative coordinates is proposed, based on symbolic equations of the physical system. The model is running in a ROS environment, which interacts with sensors and actuators. Two real-time applications with haptic feedback are presented: a piano key and a car simulator. In the present work, several sensors are used to characterize and validate the multibody model, but also to measure the system kinematics and dynamics within the human-in-the-loop process, and to ultimately validate the haptic device behavior. Experimental results for both developed devices confirm the interest of an embedded multibody model to enhance the haptic feedback performances. Besides, model parameters variations during the experiments illustrate the infinite possibilities that such model-based configurable haptic devices can offer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309802 | PMC |
http://dx.doi.org/10.3390/s21144794 | DOI Listing |
Patients with anterior cruciate ligament reconstruction frequently present asymmetries in the sagittal plane dynamics when performing single leg jumps but their assessment is inaccessible to health-care professionals as it requires a complex and expensive system. With the development of deep learning methods for human pose detection, kinematics can be quantified based on a video and this study aimed to investigate whether a relatively simple 2D multibody model could predict relevant dynamic biomarkers based on the kinematics using inverse dynamics. Six participants performed ten vertical and forward single leg hops while the kinematics and the ground reaction force "GRF" were captured using an optoelectronic system coupled with a force platform.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Xi'an Power Supply Company, State Grid Shaanxi Electric Power Co., Ltd., Xi'an 710032, China.
Under the carbon peaking and carbon neutrality target background, efficient collaborative scheduling between distribution networks and multi-microgrids is of great significance for enhancing renewable energy accommodation and ensuring stable system operation. Therefore, this paper proposes a collaborative optimization method for the operation of distribution networks and multi-microgrids with shared energy storage based on a multi-body game. The method is modeled and solved in two stages.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
Insects enhance aerodynamic flight control using the dynamic movement of their appendages, aiding in balance, stability, and manoeuvrability. Although biologists have observed these behaviours, the phenomena have not been expressed in a unified mathematical flight dynamics framework. For instance, relevant existing models tend to disregard either the aerodynamic or the inertial effects of the appendages of insects, such as the abdomen, based on the assumption that appendage dynamic effects dominate in comparison to aerodynamic effects, or that appendages are stationary.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical and Industrial Engineering, Northeastern University, USA.
We study a multi-body finite element model of a packing of hydrogel particles using the Flory-Rehner constitutive law to model the deformation of the swollen polymer network. We show that while the dependence of the pressure, , on the effective volume fraction, , is virtually identical to a monolithic Flory material, the shear modulus, , behaves in a non-trivial way. increases monotonically with from zero and remains below about 80% of the monolithic Flory value at the largest we study here.
View Article and Find Full Text PDFSensors (Basel)
December 2024
KLEEMANN Group, 61100 Kilkis, Greece.
Timely damage detection on a mechanical system can prevent the appearance of catastrophic damage in it, as well as allow for better scheduling of its maintenance and repair process. For this purpose, multiple signal analysis methods have been developed to help identify anomalies in a system, through quantities such as vibrations or deformations in its critical components. In most applications, however, these data may be scarce or inexistent, hindering the overall process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!