In the modern era, deep learning techniques have emerged as powerful tools in image recognition. Convolutional Neural Networks, one of the deep learning tools, have attained an impressive outcome in this area. Applications such as identifying objects, faces, bones, handwritten digits, and traffic signs signify the importance of Convolutional Neural Networks in the real world. The effectiveness of Convolutional Neural Networks in image recognition motivates the researchers to extend its applications in the field of agriculture for recognition of plant species, yield management, weed detection, soil, and water management, fruit counting, diseases, and pest detection, evaluating the nutrient status of plants, and much more. The availability of voluminous research works in applying deep learning models in agriculture leads to difficulty in selecting a suitable model according to the type of dataset and experimental environment. In this manuscript, the authors present a survey of the existing literature in applying deep Convolutional Neural Networks to predict plant diseases from leaf images. This manuscript presents an exemplary comparison of the pre-processing techniques, Convolutional Neural Network models, frameworks, and optimization techniques applied to detect and classify plant diseases using leaf images as a data set. This manuscript also presents a survey of the datasets and performance metrics used to evaluate the efficacy of models. The manuscript highlights the advantages and disadvantages of different techniques and models proposed in the existing literature. This survey will ease the task of researchers working in the field of applying deep learning techniques for the identification and classification of plant leaf diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309553 | PMC |
http://dx.doi.org/10.3390/s21144749 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!