The development of low-cost sensors, the introduction of technical performance specifications, and increasingly effective machine learning algorithms for managing big data have led to a growing interest in the use of instrumental odor monitoring systems (IOMS) for odor measurements from industrial plants. The classification and quantification of odor concentration are the main goals of IOMS installed inside industrial plants in order to identify the most important odor sources and to assess whether the regulatory thresholds have been exceeded. This paper illustrates the use of two machine learning algorithms applied to the concurrent classification and quantification of odors. Random Forest was employed, which is a machine learning algorithm that thus far has not been used in the field of odor quantification and classification for complex industrial situations. Furthermore, the results were compared with commonly used algorithms in this field, such as artificial neural network (ANN), which was here employed in the form of a deep neural network. Both techniques were applied to the data collected from an IOMS installed for fenceline monitoring at a wastewater treatment plant. Cohen's kappa and Normalized RMSE are used as specifical performance indicators for classification and regression: the indicators were calculated for the test dataset, and the results were compared with data in the literature obtained in contexts of similar complexity. A Cohen's kappa of 97% was reached for the classification task, while the best Normalized RMSE, namely 4%, for the interval 20-2435 ouE/m was obtained with Random Forest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309642PMC
http://dx.doi.org/10.3390/s21144716DOI Listing

Publication Analysis

Top Keywords

machine learning
16
fenceline monitoring
8
wastewater treatment
8
treatment plant
8
learning algorithms
8
industrial plants
8
classification quantification
8
ioms installed
8
random forest
8
neural network
8

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!