Wearable sensors facilitate running kinematics analysis of joint kinematics in real running environments. The use of a few sensors or, ideally, a single inertial measurement unit (IMU) is preferable for accurate gait analysis. This study aimed to use a convolutional neural network (CNN) to predict level-ground running kinematics (measured by four IMUs on the lower extremities) by using treadmill running kinematics training data measured using a single IMU on the anteromedial side of the right tibia and to compare the performance of level-ground running kinematics predictions between raw accelerometer and gyroscope data. The CNN model performed regression for intraparticipant and interparticipant scenarios and predicted running kinematics. Ten recreational runners were recruited. Accelerometer and gyroscope data were collected. Intraparticipant and interparticipant R values of actual and predicted running kinematics ranged from 0.85 to 0.96 and from 0.7 to 0.92, respectively. Normalized root mean squared error values of actual and predicted running kinematics ranged from 3.6% to 10.8% and from 7.4% to 10.8% in intraparticipant and interparticipant tests, respectively. Kinematics predictions in the sagittal plane were found to be better for the knee joint than for the hip joint, and predictions using the gyroscope as the regressor were demonstrated to be significantly better than those using the accelerometer as the regressor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309515PMC
http://dx.doi.org/10.3390/s21144633DOI Listing

Publication Analysis

Top Keywords

running kinematics
36
accelerometer gyroscope
12
level-ground running
12
intraparticipant interparticipant
12
predicted running
12
kinematics
11
running
10
treadmill running
8
kinematics predictions
8
gyroscope data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!